
NASA Contractor Report 195075

/,4,'- J V

A Generic Interface Element for
COMET-AR

Susan L. McCleary

Lockheed Engineering & Sciences Company, Hampton, Virginia

Mohammad A. Aminpour

Analytical Services & Materials, Inc., Hampton, Virginia

Contracts NASI-19000 and NAS1-19700

March 1995

National Aeronautics and

Space Administration

Langley Research Center

Hampton, Virginia 23681-0001

O"
O_

! m oD

O" e- O
Z _3 O

U

ac

I U

_.dw

I_Q L-

Q

Ib

_Z _

Uh_ C
I_ IE,m

_ W LIJ _

I _Or-4

I I.C_
,_IC Cl_ w' o

_ _-- O _-
Z _ ...J O

O_

O

June 23, 1994

Preface

This report documents the implementation of an interface element capability within the COMET-AR

software system. The report is intended for use by both users of currently implemented interface elements
and developers of new interface element formulations. For guidance on the use of COMET-AR the reader

should refer to Ref. 1-1, A glossary is provided as an Appendix to this report for readers unfamiliar with the

jargon of COMET-AR. A summary of the currently implemented interface element formulation is presented in

Section 7.3 of this report. For detailed information on the formulation of this interface element, the reader is

referred to Refs. 1-8 through 1-10.

A Generic Interla¢e Element for COMET-AR i

Table of Contonts June 22. 1994

Table of Contents

Part I. Introduction I-1

1. Introduction ... 1-1
1.1. Overview ... 1-1

1.2. What is an "Interface Element?" 1-2

1.3. Overview of the Implementation Strategy 1-4

1.4. Organization .. 1-8

1.5. Limitations, Implicit Assumptions, Conventions 1-9
1.6. Reference Frames .. 1-10

1.7. References ... 1-11

Part II.

Part III.

Analysis Example ... I1-1

2. A Simple Analysis Example .. 2-1
2.1. Overview ... 2-1

2.2. Application: End-Loaded Cantilever Beam 2-3

Procedures .. III-I

3. New Control Procedures .. 3-I
3.1. Overview ... 3-I

3.2. Analysis Control - Procedure SS_control 3-3

3.3. Macrosymbol Definitions - Procedure Initialize 3-I I

3.4. Stress Recovery Control - Procedure Post FE Stress 3-13

4. Interface Element Cover Procedures 4-1
4.1. Overview ... 4-I

4.2. Interface Element Definition - Procedure El_Define 4-3

4.3. Interface Element Drilling Freedom Suppression - Procedure
Defn El Freedoms ... 4-7

4.4. Interface ELement Stiffness Matrix Generation -Procedure

Form El Stiffness .. 4-9

5. Finite Element Analysis Procedures 5-1
5.1. Overview ... 5-1

5.2. Finite Element Initialization - Procedure Initialize_FE 5-3

5.3. Finite Element Drilling Freedom Suppression - Procedure

Defn FE Freedoms .. 5-7

5.4. Finite Element Consistent Load Definition - Procedure

Form FE Force .. 5-11

5.5. Finite Element Stiffness Matrix Formation - Procedure

Form FE Stiffness ... 5-15

ii A Generic Imerlace Element for COMET-AR

June 22. 19_4 Table of Contants

=

5.6. Finite Element Stress Recovery - Procedure Comp_FE_Stress 5-19

5.7. Compute Smoothed Nodal Stresses - Procedure

Comp_Nodal_Stress .. 5-23

Master Model Analysis Procedures .6-I
6.1. Overview ... 6.1

6.2. Master Model Generation - Procedure Merge_SS 6-3

6.3. Master Model Assembly - Procedure Assemble_Master 6-7

6.4. Master Model Solution - Procedure Solve_Master 6-13

Part IV. Processors .. IV-1

7. Interface Element Processors 7-1
7.1. Overview ... 7-1

7.2. Processor El (Generic Interface Element Processor) 7-3

7.3. Processor El1 - Hybrid Variational (HybV) Interface Element 7-21

8. Master Model Generstion .. 8-1
8.1. Overview ... 8-1

8.2. Processor MSTR - Master Model Generator 8-3

Part V.

Part Vl.

Developer Interface ... V-1

9. Developer Interface ... 9-1
9.1. Overview ... 9-1

9.2. New qSymbols ... 9-3

9.3. The Generic Interface Element Processor Shell 9-5

9.4. The Generic Interface Element Processor Cover 9-25

9.5. makefile Example .. 9-29

Data Objects ... VI-1

10. New Date Objects ... 10-1
10.1. Overview .. 10-1

10.2. New Nodal Data Objects 10-3

10.3. Element Data Objects .. 10-5

Appendix A: Glossary .. A-I

A Genetic Into Bement lot COMET.AR ii

June 22. 1994 I. Inmxluction

Part I.

INTRODUCTION

A _ Inlm'lace Element lot COMET-AR I-1

I. tn_'ock,J_ Juno 22, 1

THIS PAGE INTENTIONALLY BLANK

I-2 A Generic Inmd_o Element lot COMET-AR

June22.1994 1.IntroduclM_

• Introduction

1.1. Overview

This report describes the implementation of an interface element capability within the COMET-AR
software system (Ref. 1-1) and contains a summary of the implementation,a simple analysis example for the

new user, a description of the user interface (including generic procedures which may be used to access

interface elements), a description of the developer interlace, and a description of new data structures. The

report has been designed for both users of existing interlace elements and developers of new interface

elements and is organized as follows:

II.

Introduction. Answers the questions:

• What is an interface element?

• What does an interface element do and why is it needed?

• How does an analysis change when interface elements are used?

• What are the limitationsand assumptions of the element implementation?

A Simple Analysis Example. Providesa simple example of an analysis
using an interface element.

III. Procedures. Describes new and modifiedprocedures including:

• Generic control procedures
• Interface element cover procedures
• Modified finite element analysis procedures

• Master model analysis procedures

IV. Processors. Describes the use of two new processors:

• The Generic Interface Element Processor(El)

• The Master Model Processor (MSTR)

V. Developer Interlace. Describes programmingdetails of the new processors
including:
• Generic interface element processor shell

• Generic interface element processor cover
• Master model generation in processor MSTR

Vl. Data Objects. Describes new data objects in the object orienteddatabase
including:
• New nodal objects

• New element objects

A. Glossary. Defines terms used throughoutthe document.

New users should find Parts I through IV the most useful. _ of new interface elements are
directed to Parts I, V, and VI for programming information and Parts II and III for assistance in using the

software. Both users and developers should be familiar with the COMET.AR system as described In

the COMET.AR Users" Manual (Ref. 1-1)

A Generic Interlace Element lot COMEToAR I-1

PRECEDING PAGE BLANK NOT FILMED

1. In_oduc/Jon June 22, 1994

1.2. What is an "Interface Element?"

An interlace element is a special type of finite element which connects independently modeled finite
element substructures along their common interface. The connected finite element models need not have a

one-to-one correspondence between the nodes acrossthe common boundary (Le., they need not be nodally

compatible). The interface element is therefore particularly useful for giobal/Iocal analyses and for analyses
involving component substructuring.

In the past, applications of coupled global/bcai analysis and component substructudng have required at
least partial, and often full, nodal compatibility across gbbal/iocal and substructure boundaries. Quite often,

the transition across substructure boundaries is performed through some form of mesh transitioning. One

technique uses either distorted quadrilateral or triangular finite elements to make the transition (called "htq"

and "htt" refinement respectively, in COMET-AR). Some have developed special elements which typically
connect two elements to one along a single boundary and are known by various names such as variable

order elements (Refs. 1-2, 1-3) and transitionelements (Ref. 1-4). NI of these special elements require some

degree of nodal compatibility (usually only two new elements may be connected to one original element).
One of the most common means of transitioningbetween different quadrilateral discretizations is through the

use of multipoint constraints which may be applied as constraints (e.g., "hc" refinement in COMET-AR) or

through a modification in the finite element formulation of the affected elements (Ref. 1-5). Both of these

constraint techniques require nodal compatibility similarto the compatibility required of the special elements.

!

m

m

withmesh_.,n_*o._ m_h _nJonJng attaching mmponents without mesh _oning

Figure 1.1. Examples of Mesh Transitions

Each of these transitioning techniques potentially introduces additional error into the solution due to

constraints or distortionand each also requires at least some degree of nodal compatibility. Several coupling
methods which do not require nodal compatibility (e.g., see Figure 1.1) on substructure or element

boundaries have been developed (Refs. 1-6, 1-7). However, these methods have also typically had difficulty
in maintaining solution accuracy, particularly near the common substructure boundaries. Recent work has

focused on the development of a means of connecting independently modeled substructureswhich maintains

solution accuracy (Refs. 1-8, 1-9). Several techniques for tying together two substructures (i.e., coliocation,

least-squares, and hybdd variational) have been examined. It was concluded that the use of an independent
function to connect two independently modeled substructures through a hybridvariational forrnuiationwas an

effective method of connecting such substructures. The method preserves solution accuracy (of

displacements and stresses) across the common substructureboundaries. The interlace element reported on
in Ref. 1-10 represents a generalization of this previous work.

1-2 A Gen_'ic Intmtaco Element br COMET-AR

June 9,_, lg04 1. inl_oduclion

Software implementation:ofthe interface element concept was driven by three requirements: (1) the need

for a general implementation to accommodate potentially several different types of interface formulations; (2)

the need to extend, in the future, the hybridvariational formulation to include nonlinear and dynamic effects

and to permit its application in adaptive refinement; and (3) the need for a user-friendly environment in which

the interface technique could be used to solve realistic, potentially large, structures problems. Original

prototype software served well duringthe "proof-of-concept"phase but required vepj large amounts of disk

space and large amounts of machine memory. It was also severely limited in its application in that it could not

process multiple interfaces, more than two substructures, or generally curved interfaces. By recasting the
interface formulation in the form of an element (much like a finite element) and creating a new software

framework for the element implementation, all of the requirements are met. Developers of new interface

formulations have a platform of support software readily available and may insert new software kernels

without understanding the requirements of accessing the database. Extensions to the existing hybrid
variational formulation may be implemented by adding new kernel modules (subroutines). Because it was

implemented within a general-purpose software system, COMET-AR, the interface element can be used to

solve practical applications. This report provides a detailed description of the interface element

implementation.

A _ Inmrbmce_ kx _ET-AR 1-3

1.Inlroducion June22,1994

1.3. Overview of the Implementation Strategy
COMET-AR (Ref. 1-1) is a modular software system composed of the standard finite element modules

(e.g., model definition, assembly) along with modules which perform error estimation and mesh refinement.

These modules are semi-independent FORTRAN executables called processors. The system allows for

extensions through the addition of both new processors and new command language procedures which

provide high level control, may operate on data using the command language CLAMP, and typically call

processors to perform the more compute-intensive tasks associated with a structuralanalysis.

The implementation of the interface element was accomplished by adding both new processors and new

procedures to COMET-AR. The flowchart in Figure 1.2 describes the solution process when using interface

elements. Initially, the user must define each substructure completely (i.e., node locations, element

connectivity, loads, boundary conditions, material and section properties). The substructure definitions serve

as input to the interface element definition which is accomplished through a new generic interface element

(El) processor (shown as the shaded boxes in the Figure). Interface elements are defined by the

substructures to which they are connected and may internally generate new displacement nodes (herein
called pseudo-nodes) and/or traction nodes (herein called alpha-nodes). Once the interface elements have
been defined, all element stiffness matrices are formed and unstiffened degrees-of-freedom (e.g., drilling

degrees-of-freedom) are suppressed. The various substructures are then merged into a single, global,

master model for the purposes of assembly and solution. The new master model processor, MSTR, (shown
as the large box in the Figure) combines all input substructures by renumbedng nodes sequentially and then

copying and modifying the data needed to effect a solution (Le., element connectivity, active
degree-of-freedom tables, element matrices and vectors, nodal vectors). With all data in a single library file,

the standard assemblers and solvers may be used on the global master model. The MSTR processor may be
used after the solution has been obtained in orderto extract substructure resultsfrom the master model. Note

that while n substructures are depicted in Figure 1.2, a single model may be used with interface elements
connecting various parts of the one defined model.

Substructure 1: Subsllt_um 2:
Joint kgmgxm, o/emont Joint kx:a_ns, 4Nment

T T

Pre-Processor

Subs_luro n:
Joimlocloni olement

T
/

f
Mister Model Pr_lm_r

Post-Proc_sor
C_mlbirno_ 1 dmx._lhn hnW)I eir_o, nnmtanr "Tlko_ tkxd_o_mr madqdamclol_litout Iho rNU#S
rnoclJ_ _11c=ntminhntm _ is indNid_ k)rNch ind,,4clu/-,bemJc:_uro. This_ll _ _m

el_t _. _r Io stay tmnspemm Io theusw.

mmembiers, r

Figure 1.2. Coupled Analysis Solution Strategy

The generic nature of the El processor facilitates the implementation of additional interface formulations

within the general-purpose framework thereby enabling future research in interfacing techniques. The
processor is designed so that an interface element developer is isolated from all user and database

interaction. The user interface for the interface element is composed of both processors and procedures.
While a, interaction may be through processors (the El generic interface element processor and the MSTR

master model generator), cover procedures have been written which simplifythe user interaction.

1-4 A Generic Intmtaoe Element for COMET-AR

June22,1994 1.Inll'oduc_on

1.3.1. New Procedures

Several procedures which hide the actual new processor execution have been written. Macrosymbols are

used to define such things as file names and procedure names. A script file template for execution

(SS_controLcom) has also been provided and may be adapted to execute most applications. The template

calls a procedure named SS_contml (discussedfully in Section 3.2) that coordinates (automatically) the flow
of the analysis.

The procedures required to run an analysis with interface elements am summadzed in the Table 1.1. The

experienced COMET-AR user should note the absence of familiar procedures (e.g., L_ST&TIC_I,

STIFFNESS). These "normal" analysis procedures have been split into functional pieces and incorporated
intothe procedures listed in Table 1.1 in order to conform to the new analysis flow depicted in Figure 1.2. Of

the procedures listed in the Table, only three must be user defined: Initialize, El_Define, and Merge_SS. The

remaining procedures rely on macrosymbois defined by the user in the InlUallze procedure and are
transparent to the user since they are invoked automatically by the control procedure, SS_control. All

required user action is discussed in the Sections listed.

Table 1.1. Summary of New Procedures

Procedure Name Function Section

SS_corttrol Controls the analysis. No user interaction is required other than modification of
the Is confroi.com template file.

Inlthillze Initializes required macmsymbois. Requires modification by user.

Post FE_Stress Controls stress resultant recovery.

iB Proceesor Cover Procedures:

=Defn El Freedoms Defines the active degrees of freedom for each node (specifically each
-- - pseudo-node and alpha-node) in the interlace element substructure. Called

automatically by SS control; requires no user action.

Form_ELstiffness Forms interlace element stiffness matrices. Called automatically by
SS control; requires no user action.

Modifled Finile Element Procedures: _ i

Inltlallze_FE Podorm finite olemom substructure initialization. Called automatically by
SS_oontrol; requires no user action.

Defn FE Freedoms Define the active degrees of freedom for each node in the finite element
- - substructure. Called automatically by SS control; requires no user action.

Form FE_Force Forms consistent load vodor. Called automatically by SS_omntrol; requires no
user action.

Form_FE_stiffness Form element stiffness matrices for finite element substructures. Called
automatically by SS_control; requires no user action.

Comp_FE_stress Compute finite olernent stress resultants. Called through Post FE_SUm.

Comp_Nodal_stmu Compute smoothed nodal stress resultants for substructures and master model.
Called through Post FE_Strm.

Maslrsr Model Analysis Procedures _ : : , i

Merge. SS Merge finite element and interface element substructures into a single master
model. May require modification by user.

3.2

3.3

3.4

4

4.2

4.3

4.4

: : 5

5.2

5.3

5.4

5.5

5.6

5.7

: :6

6.2

Assemble_Master Perform assembly of master model system stiffness matrix and load vector. 6.3
Called automatically by SS_contml; requires no user action.

Solve Master Execute the appropriate solver for the assembled master model. Called 6.4
-- automatically by SS_control; requires no user action.

A _ InWrlam Element lot COMET-AR 1-S

1.Inlmduclion June22, 1994

1.3.2. New Processors

The software framework developed for the interface element has been used to implement a hybrid

variational interface element; this same framework may also be used by developers to implement additional

interlace formulations as new interface element types. The generic interface element implementation is

based on the same philosophy used in the generic element processor (GEP) implementation of structural

elements (Ref. 1-11). Just as specific structural elements are implemented via new ES (Element-Structural)

processors, additional interface elements may be implemented via new El (Eiement-lnterface) processors.
While the GEP served as a model, the requirementsof the interface element are such that substantial effort

was invested in creating a GEP tailored for the interlace elements. One of the new features is a provision for
"traction nodes," that is, nodes for which the unknowns are tractions rather than displacements or rotations.

These traction nodes currently have no meaningful physical location (i.e., their nodal coordinates are

arbitrarily assigned) but rather,exist along the ec_es of finite elements connected at a given interface. Nodes

introduced along the interlace (Le., not attached to a finite element butattached only to the interface element)
which have displacement and/or rotationaldegrees of freedom are denoted "pseudo-nodes." Traction nodes

are denoted "alpha-nodes."

The El processor (depicted in Figure 1.3) has a generic software shell (which provides for uniform user

input and database interaction) and a software cover (which communicates between the shell and the

developer supplied kernels). Each developer of new interface elements must supply the software kemels
which form the interface element stiffness matrix. All interactionwith the database is accomplished for the

developer through the software shell usingHigh level Database (HDB) utilities (Ref. 1-12).

PROCESSOR El/

GENERIC INTERFACE ELEMENT PROCESSOR

SOFTWARE SHELL

Figure 1.3. Interface Element Processor Design

The El processor permits both the automatic and user-specified definition of the interface element

pseudo-nodes. For example, the currently implemented hybrid variational interface element (processor El1)

will select automatically a proper number of pseudo-nodes or will permit the user to specify the number of
pseudo-nodes. Thus, the number of pseudo-nodes may be determined either within a developer-written

kernel or through user inputbut must fall within a range which ensures that the resultant global system will be

1-6 A GenericIrlmrbolElementforCOMET-AR

June 22, 1994 1. Inm)duodon

nonsingular. Whether user-specified or developer determined, the El processor will generate the

pseudo-nodes as actual nodes in the database. If tractions exist as unknowns (as they do in the Ell version

of the hybrid variational interlace element), the processor will generate alpha-nodes as actual nodes in the

database. An interface element connectivity is written to the database and consists of the finite element
nodes of each connected substructure along with the node numbers of the pseudo-nodes and the

alpha-nodes. Thus, the interlace element stiffness matrices may be assembled as any other element matrix

(Le., the assembler simply uses the element connectivity).

The El processor shell calculates the geometry of the interlace element so that it is independent of the
specific element formulation.This element geometry may be determined in one of three ways. The user may

define a function (currently limitedto a finearfunction)that represents the exact geometry of the interface. In

this case, the El shell will identify the substructurenodes lying along the function. The user may altematively

specify the nodes through which a function (piecewise linear, quadratic spline, or cubic spUne) is passed. In
this case, the El shell will read the nodes, retrievetheir coordinates, and construct the interlace element path.

The third option for definition of the element geometry is available only for interface elements with linear

geometry. Using this option, the user may specify only the nodes at the end points of the interface. In this

case, the El processor will internallyconstructa line between the two nodes, identify the substructure finite

element nodes lying along the line, and constructthe interface element.

A second processor which merges the substructuresinto a single, master finite element model is also
provided. The Master Model Processor, MSTR, renumbers all of the input nodes (including pseudo-nodes

and alpha-nodes) sequentially, renumbers the elements, rewrites the element connectivities, and copies all
the data required for the solution into a singlelibraryfile. The resultingmaster model then contains both finite

elements (possibly several differenttypes) and interface elements. The element stiffness matrices may then

be assembled using the available assembly processor (e.g., processorASM) and the resultingglobal system
of equations may be solved using a conventionalsolver (e.g., processor PVSNP).

A Gefledc Inlm'lace Element tot GOMET-AR 1-7

1. Inlmdu_Jon June 22. 1994

1.4. Organization

The files required to run an analysis using interface elements have been consolidated into a directory

structure which all users and developers may access (to read). This directory structure is outlined in Table
1.2. The environment variable SAR_ROOT, as well as the environment variables listed inthe Table, will be set

up automatically upon initializationof the COMET-AR system (see Section 2.2).

Table 1.2. Directory Structure for Interface Elements

Environment
Directory Variable

SAIl_ROOT�el ,_#4R_B

Function

Top level interface element directory

,I¢4R_ROOT/el/mocls $AR_EIMODS Top level for software developers

SAR_ROOT/el/modsRnc SAR_EIINC Include files for El and MSTR processors

Source and object files for the El shell. Includes a
SAR ROOTlel/mocls/el SAR_EISRC template for Ekcover.ams and a makeflle.

Source, object, and executable files for processor Erl.
SAR_ROOT/eYmods/eYell SAR_B1 Includes source and object for B/. cover.ams and a

makefl/e.

SAR_ROOT/eYmods/mstr SAR_MSTR Source, object, and executable files forthe MSTR
processor.

SAR_ROOT/elR_n SAREIBIN Executables for Ell and MSTR.

Top level for users. Contains the procllb.gal procedure
SAR_ROOT/eYpt¢ $AR_EIPRC library and templates for user writIen procedures and

scripts.
•_4R_ROOT/eYprc/control None Control procedures

SAR_ROOT/el/prc/utillty

SAR_ROOT/el/demo

None

SAR_EIDEMO

NoneSAR_ROOT/el/applications

Utilityprocedures

Demonstration and analysis example files

Applicationsprocedure files

Atemplate file for execution of an analysis, called ss_control.com, is located in SAR_ROOTlel/prc/. An
explanation of this file appears in Chapter 2.

1-8 A Genetic InlerMoe Eklme_ for COMET-AR

June22, 19e4 1.Introduction

1.5. Limitations, Implicit Assumptions, Conventions

There are currently limitations on the range of application of the interface element. Certain assumptions

have been made which place additional limitations on the interlace element's use. In the future, as the

implementation is broadened to include additionalfunctionality,many of these may be addressed.

1.5.1. Limitations

• All interface elements must be in a single libraryand only interface elements are assumed to be inthat

library.As long as all interface elements are defined in a single executionof the El processor, this will

remain so. Note that this means that the current implemantation will not permit the mixingof interface

element processors or types.
• Only Finite Element and Interlace Bement substructuresare explicitlyprovided for at present. While the

user input has hooks for Rayleigh-Ritz and Boundary Element Substructures,these types of
substructures do not currently exist in COMET-AR.

• Interface elements may only be applied in linear static applications.

• Each finite element along the interface is of uniformorder on each element edge (Le., finite elements
must have the same number of nodes on each element edge or must be implemented so that they

appear to be this way).
• For each substructure, all finite elements alongthe interface are of the same order. The order of the finite

elements need not be the same for each attached substructure.

• Stresses or stress resultantscannot currentlybe computed on the Master Model. The displacement

solution must be split outfor each substructure (usingthe MSTR processor) and stresses calculated at
the substructure level. However, utilitiesexistwhich allow the user to combine substructure stresses into
master model stresses.

• The choices for the geometry and displacement interpolationfunctions are limitedto: a piecewise linear

function, quadratic spline, or cubic spline. The geometry and displacement interpolationfunctions may be

different functions (e.g., piecewise lineargeometry and cubic spline displacement).
• Only 8 data libraries may be open at one time withinthe COMET-AR system. Therefore, there can be no

mere than 5 active substructure libraries. This restrictionassumes that one library is used for the

interface elements, one for the master model, and one for the procedure library, thereby leaving 5

libraries for use by the substructures.

1.5.2. Implicit Assumptions

• The user must understand how to use COMET-AR to perform an analysis.
• Each interface element processor contains only one interface element type.

• Interface elements may intersect each other only at end points.

1.5.3. Conventions

• Each substructure is assigned a unique identificationnumber which remains with the substructure

throughout the analysis (Le., substructure 1 remains substructure 1 from start to finish).
• Pseudo-node numbering begins at I inthe interface element substructure. This happens automatically

provided all interface elements are defined in one execution of the interface element processor.
• For each interface element, displacement nodes (i.e., pseudo-nodes) are numbered first, traction nodes

(Le., alpha-nodes) are numbered second.
• The Master model orders all of the finite element nodes first, all pseudo-nodes second, and all of the

alpha-nodes last.
• Pseudo-nodes are evenly spaced along a given interface element.

AGenedcInterlaceElementforCOMET-AR 1-9

1. Inlz'odz,,_Jon June 22, 1994

1.6. Reference Frames

COMET-AR permits the use of several different reference frames: computational (the frame attached to

each node in which the solution is obtained) denoted by the subscript .'c," element (the frame attached to

each finite element) denoted by the subscript "e," global (the frame in which the nodal coordinates are

defined) denoted by the subscript "g," and material or stress (the frame that defines the principal material

direction) denoted by the subscript "rn."The interface element introducestwo additional reference frames.
The edge frame defines the finite element edge along the illterface (the computational frame for the

alpha-nodes) and is denoted by the std)smil_ "d." The interface frame defines the interface path (the

computational frame for the pseudo-nodes) and is denoted by the subscril_ "s." Figure 1.4 depicts these

various reference frames. Finite element nodes are denoted by filled circles; pseudo-nodes are denoted by

filled squares.

Zm_Ym ___., Fin#e element Nodes

- P .do-Nod,s \

S
_L m'."mm'da; frame

• yg Ip, c'. nodal _putMional frame
Zu /_ [e: finite eternent frame

I g: global frame
I s: pseudo-_e computational frame

_x9 I d: alpha.._e oomputationa,l frame
I

Figure 1.4. Interface Element Reference Frames

1-10 A Genre'it InlBrfa_ Eklment for COMET-AR

June 22, 1994 1. Inlrodu_on

1.7. References

1-1 Stanley, G.M., Hudbut, B., Levit, I., Stehlin, B., Loden, W., and Swenson, L., COMET-AR User's Manual,
LMSC Report #P032583, 1993.

1-2 Bathe, K.J., Finite Element Procedures in EngineeringAnalysis, Prentice Hall, New Jersey, 1982.

1-3 Choi, C.K., and Park, Y.M., "Transition Plate Bending Elements with Variable Nodes," Numerical
Techniques for Engineering Analysis and Design - Proceedings of the International Conference on
Numerical Methods in Engineering: Theory and Applications,NUMETA "87,edited by G.N. Pande and J.
Middleton, Martinus Nijhoff Publishers, Boston, 1987, pp. D31/1-D31/8.

1-4 Subbaraj, K. and Dokainish,M.A., "Side-NodeTransitionQuadrilateral Finite Element for Mesh-Grading,"
Computers and Structures,Vol. 30, No. 5, 1988, pp. 1175-1183.

1-5 McDill, J. M., Goldak, J. A. Oddy,A. S., and Bibby, M. J., "lsoparametricQuadrilaterals and Hexahedrons
for Mesh-Grading Algorithms,"CommunicationinApplied Numerical Methods, Vol. 3, 1987, pp. 155-163.

1-6 Maday, Y., Mavriplis, D., and Patera, A., "Nonconforming Mortar Element Methods: Application to
Spectral Discretizations,"NASA CR-181729, ICASE Report No. 88-59, October 1988.

1-7 Shaeffer, H.G., MSC/NASTRAN Primer,Static and NormaIModes Analysis, Shaeffer Analysis, Inc., Mont
Vernon, New Hampshire, 1979, pp. 262-265.

1-8 Aminpour, M. A., Ransom, J. B., and McCleary, S. L., "CoupledAnalysisof Independently Modeled Finite
Element Subdomains,"AIAA Paper Number 92-2235, 1992.

1-9 Aminpour, M.A., McCleary, S.L., and Ransom, J.B., "AGicbal/Local Analysis Method for Treating Details
in Structural Design," Proceedings of the Third NASA Advanced Composites Technology Conference,
compiled by J.G. Davis, Jr. and H.L Bohon,NASA CP-3178, Vol. 1, Part 2, 1992, pp. 967-986.

1-10 Ransom, J. B., McCleary, S. L, and Aminpour, M. A., "A New Interface Element for Connecting
Independently Modeled Substructures,"AIAA Paper Number 93-1503, 1993.

1-11 Stanley, G. M. and Nour-Omid, S., The Computational Structural Mechanics Testbed Generic
Structural-Element Processor Manual, NASA Contractor Report 181728, March 1990.

1-12 Stanley, G. M. and Swenson, L., HDB Object-Orianted Database Lrdlitiesfor COMET-AR, NASA CSM
Contract Report, August, 1992.

A Generic Inlmbloe Element tro¢COMET-AR 1-11

1.Inll'odl.lclJon June_'_. 1994

THIS PAGE INTENTIONALLY BLANK

1-12 A Generic Imdlc:e Elmnent for COMET-AR

June 22, 1994 II. Analysis Exsmple

Part II.

ANALYSIS EXAMPLE

A (b_m¢ I_ _ I0¢ COMET-AR

PRECEDING PAGE BLANK rIOT FILME_

II-1

II. Analysis Emmple June 22, 1994

THIS PAGE INTENTIONALLY BLANK

II-2 A Gene_ Inlmta_ Element for COMET-AR

June22,1994 2. A SirnpleAnaly_sExamt:4e

2. A Simple Analysis Example

2.1. Overview

This Chapter contains a simple example of an analysis using a single interface element. It is assumed

that the user is familiar with COMET-AR. The example application is a cantilever beam with a variable end

load. User-written procedures and a scriptfor executing the analysis are provided. The Chapter contains the

following sections:

Table 2.1. Outline of Chapter 2: A Simple Analysle Example

Secllon Topic Function

Explainsthe use of the new sottware for a
2 Application: Canlllever Beam simple, single interface analysis

Section 2 contains example model generation and analysis procedures. Each procedure is accompanied
by an explanation of the required user action. Thlx ChsDter ix not m tutorinl in the sense that it does not

provide step-by-step instructionson howto use COMET-AR. Rather, the user is assumed to have knowledge

of COMET-AR, its procedures and how to read them, and how to perform an analysis. The Chapter focuses

on providing the user with the procedures required for an example application, highlighting the additional
requirements of the interface element.

The COMET-AR initializationprocedure has been updated to reflectthe interface element software. New

environment variables have been included and am automatically defined when the COMET-AR iogln file is

executed. Running an analysis usinginterface elements requiresseveral steps which may be summarized as
follows:

1. Create a new directory forthe new application.

2. Copy the files:

• SAR_EIPRC/SS_controLcom
• SAR_EIPRC/eLdeflne.clp
• SAR_EIPRC/merge ss_:lp
• $AR_EIPRCRnitlalize.clp
into the new application directory.

3. Create model definition files for the given application.Note that models may be created through
PATRAN (or some other model generation software)or through command language procedures.

4. Modify the procedure files:

• ei_eiefine.clp
• meroe_ss.clp
• Inltlallze.clp
to reflect the current application.

5. Modify the SS_controLcom script file to reflect the current application.

6. Run the analysis.

7. Post-process the resu_ as required.

Steps 1 through 6 are descrbed in the following Sections. Where appropriate, user actions are high-

lighted and summarized at the bottom of each page. Post-processingmay occur at either the substructure or

the master model level and may be performed with the usual post-processingfacilities (e. g,.PATRAN).

A _ _mrlaceElementforC,OMET-AR

PRECEDING PAGE BLANK NOT FIL.;:_

2-1

2. A Simple Analysis E]mmple June 22, 1994

THIS PAGE INTENTIONALLY BLANK

2-2 A Generic Irmdace Element for COMET-AR

June22,lOO,L 2. A Snp_ k._lym Eum_

2.2. Application: End.Loaded Cantilever Beam

2.2.1. General Description

The application described in Figure 2.1 is a simple example of an analysis using a single interface

element. The cantilever beam may be loaded in tension, in-plane or out-of-piane shear, or bending at the
beam tip.

me

'-" L

_.-h Interface Element

12 / 10

6_5 16

IO II

7 8

4 5

1 2

SubstructureI

311 1

Ib._l

11 12

7 8 h

E = I00000.
V = 0.0

t = 0.I

h= I.

L= 10.

Loaded End

Substructure2

Figure 2.1. Cantilever Beam with Various End Loads

While not required, the user should begin by creating a new directory within which the analysis will take

place. By keeping each analysis in a separate directory,there is less chance for confusion since procedure
files will have to be added for each differentapplication. For this example, a directory named beam could be
created and the files:

• SAR_EIPRC/SScontrol.com
• SAR_EIPRC/el_define.clp
• SAR_ EIPRC/merge_ss.clp
• SAR_EIPRC/Inltlallze.clp

copied into this directory. Note that the environmentvariable SAR_EIPRC is defined during the COMET-AR

initialization (i. eexecution of the cometar.logln file). Once all the necessary files are in place, the user must
create the model definition procedures,t

• INmALIZATION USER ACTION i

• Ensure proper COMET-AR initialization

• Create an application directory named beam

• Copy the files:$AR_EIPRC/SS_controLcom
SAR_EIPRC/ei_clefirm.clp
SAR_EIPRC/merge_ss.clp
SAR_EIPRC_nltlalize.clp

to the bwm directory.

• Proceed to the model definition (next Section)
I

1"Notethat the purposeof thisChapteristo assistthe userinrunningananalysiswith interlaceelements;itis notto
teach a new user how to performan analysiswithCOMET-AR.Thou unlamlller with COIWET.ARshould
ooneuit the COMET-AR User's ManualendTutorialdocument==isneeded.

A Ge_nefk:Inlod_ _ ix COMET-AR 2-3

PRECEDING PAGE BLANK NOT FIL:; _,,-.'T"

2.A Siml_ Analysis_ June22,1994

2.2.2. Model Definitions

The model definition procedures must fully define each of the substructures. Full substructure definition

includes the definition of: nodal coordinates, element connectivity,boundary conditions, applied loading, and

material and section properties. The configuration of the application shown in Figure 2.1 lends itself to the use

of a genenc rectangular grid generation procedure for the definition of the models of both finite element

substructures. This generic procedure along with procedures for defining the substructures identified as
Substructure I and Substructure 2 in Rgum 2.1 are provided in the following Sections.

The model definitions am initiated by firstcopying the f'_ SAR_EIDEMO_mroeam_ufil.prcto the cur-

rent working directory."l'hb file contains the generic model generation procedure and its subordinate proce-

dures. Each specific model generation procedure (for each of Substructures 1 and 2) will call the top level

generic procedure contained in this file and named BEAM_MODEL. The model generation procedures use

several user-defined macrosymbols. These macrosymbols are accessed by copying the procedure file

SAR_EIDEMO[oeam/macros_lp into the currentworking directory.

i ___MODELDEFINTIONUSER _OH _i_ _ _ :

• Copy SAR_BDEMO[oesm/bemm_utU.prcto the application directory (beam).

• Copy SAR_EIDEMO, roeam/macros.clpto the applicationdirectory (beam).

• Define user macrosymbols, if any, in a procedure file as in Section 2.2.2.2.

• Create a procedure to define Substructure 1 as in Section 2.2.2.3.

• Create a procedure to define Substructure 2 as in Section 2.2.2.4.

• Proceed to the definitionof the required macrosymbols as in Section 2.2.3.

2-4 A_ Intw/aceElementlotCOMET-AR

June 22, 1994 2. A Simple Anal/sis Example

2_..2.1 Generic Rectangular Mesh Generation Procedure

The generic modeling procedure BEAM_MODEL creates a regular, rectangular finite element model

which may be loaded and/or constrained on any edge. It is fully parameterized and uses various arguments

to determine the dimensions and locationof the rectangular region, alongwith the specification of loading and

boundary conditions. Within the file SAR_EIDEMORmant4beam_util.prc, is a set of utilityprocedures which

may be used repeatedly forthe model definitionsof any combination of regular, rectangular regions inthe x-y
p4ane(minor modifications are required for regions which have a nonzero or varying z coordinate). Once this

file has been added to the current procedure library,the user need only call BEAM_MODEL with the proper

arguments; the subordinate procedures will be called automatically butwill remain invisibleto the user. A list-

ing of the BEAM_MODEL procedure follows:

"procedure BEAMJ4ODEL (es_proc ;es_type; --

es_nen ; --

nelx ; nely ; --

load_dir ; --

consedge ; cons ; --

loade_ge ; load ; --

x0 ; y0 ; --

Lx;Ly ; --

E ; PR ; THICK)

• remark ***************'*"

• remark Defining Beam Model

• remark "**********'******

• ..

ES processor name and element type

Number of nodes for this element type

Number of elements in x and y directions

Direction of applied load (if any)

Edge # of constr, edge and const, dofs

Edge # of loaded edge and load values

Coordinates of first node in region

Length in x and y of the region

Young's mod., Poisson's ratio, thickness

. Define Nodal Coordinates and Transformations (and Model Summary)

..

• call DEF_NODES (nen =[es_nen]; nelx =[nelx]; nely =[nely]; --

x0=[x0]; y0=[y0]; Lx=[Lx]; Ly=[Ly])

..

• Define Material and Fabrication Data

..

• call DEF_FABS (E = [E] ; PR = [PR] ; THICK = [THICK])

• Define Element Connectivity (Nodal, Fabrication and Solid Model)

..

• call DEF_ELTS (es_proc=[es_proc]; es_type=[es_type]; es_nen =[es_nen])

• Define Loads and Boundary Conditions

..

• call DEF_LBC (consedge = [consedge] ; cons = [cons] ; --

loadedge = [loadedge] ; load = [load] ; --

nelx = [nelx] ; nely = [nely] ; --

es_proc = [es_proc] ; es_type = [es_type] ; load_dir = [load_dir]

"end

A Generic Inlmlace Element lot COMET-AR 2-5

2. A S_mple Aralym Example June 22, 1994

2.2.2.2 Model Definition Macrosymbols

The model definition for this example is facilitated through the use of a number of macrosymbols

contained, in tl_s case, in a separate procedure which resides in the file $AR_EIDEMO/'oeam/macros.clp.

This procedure contains macrosymbol definitionswhich are used in subsequent calls to the model definition

procedures for the two substructures. By definingthese macmsymbols either within a procedure or within the

scriptfile, the models may be modified while the model definitionprocedures remain unaltered. A listingof the

macrosymbol definition procedure follows:

Wprocedure MODEL_PARAMS

• Define model parameters using macrosymbol arrays. The # of items in each array is

• determined by the | of substructures (one item in each array for each substructure)

Sdef/i num_models == 2 # of substructures (SS)

•def/i nelx == 2,3

• def/i nely == 3,2

• def/e x0 == 0.0,i.0

• def/e y0 == 0.0,0.0

_def/e Lx == 1.0,4.0

•def/e Ly == 1.0,1.0

Sdef/i consedge == 4,0

_def/a cons == 'fixed','none'

• def/i loadedge == 0,2

• def/e load == 0.0,1.0

• def/e load dir == 0,1

Sdef/a ES_PROC == ES1

Sdef/a ES_TYPE == Ex47

• def/i es_nen == 4

of elements in x direction for each SS

of elements in y direction for each SS

x-coordinate of the first node for each SS

y-coordinate of the first node for each SS

x-dimension for each SS

y-dimension for each SS

Edge # of constrained edge for each SS

Constraints for each SS (all nodes on edge)

Edge # of loaded edge for each SS

Loading for each SS (applies to <loadedge[i]>)"

Direction of applied loading (0 => no load)

ES processor name

ES element type name

| of nodes per element of <es_type>

Wend

2-6 A Generic Inlmrla_ Element lot _-AR

June 22, 1884 2. A Simple Analyr_ Exan_

2_.3 Substructure I Model Definition

With thegeneric modelingprocedureanditssubordinateproceduresandthe macrosymboldefinitionsin
place,it remainsto define procedurestor eachofthesubstructures.The followingprocedure,locatedina file

namedeAR_EIDEMORIeam,WlodelI.clp,is an example of a procedurewhichwillfullydefinethe modelfor
SubstructureI providedthegeneric modelandmacrosymboldefinitionfilespreviouslydiscussedareused.

eprocedure Modell_Def

• Call the generic model procedure using

$call BEAM_MODEL (es_proc = <es_proc>

estype = <es_type>

es_nen = <es_nen>

nelx = <nelx[1]>

nely = <nelx[1]>

consedge = <consedge[1]>

cons = <cons[l]>

loadedge = <loadedge[1]>

load = <load[l]>

load_dir = <load_dir[1]>

x0 = <x0[1]>

y0 = <y0 [1]>

Lx = <Lx[1] >

Ly = <Ly [I] >

E = 1.0E5

PR = 0.0

THICK = 0.01

Send

the macrosymbols which define substructure 1

-- . ES processor name

-- . ES element type

-- . # of nodes for this ES type

-- # of elements in x direction

-- # of elements in y direction

-- Edge # of constrained edge

-- Constrained dofs

-- Edge # of loaded edge

-- Load values

-- Load direction

-- x coordinate of first node

-- y coordinate of first node

-- Length in x

-- Length in y

-- Young's modulus

-- Poisson's ratio

) thickness

222..4 Substructure 2 Model Definition

The procedure defining Substructure 2 is nearly identical to the procedure of the previous section (which

defined Substructure 1). The only differences between the two are in the procedure name (which reflects the
substructure number) and inthe macrosymbolsused (the second item in the list is now used rather than the

first). The following procedure, located in a file named eAR_EIDEMO,4_eam/model2.clp, is an example of a

procedure which will fully define the model for Substructure 2 provided the generic procedure and

macrosymbol definition files previouslydiscussed are used.

eprocedure Model2_Def

. Call the generic model procedure using

$call BEAM_MODEL (es_proc = <es_proc>

es_type = <es_type>

es_nen = <es_nen>

nelx = <nelx[2]>

nely = <nelx[2]>

consedge = <consedge

cons = <cons [2] >

loadedge = <loadedge

load = <load[2]>

load_dir = <load dir

xO = <xO[2] >

y0 = <y012] >

Lx = <Lx[2] >

Ly = <Ly[2] >

E = I.OE5

PR = 0.0

THICK = 0.01

*end

the macrosymbols which define substructure 2

-- ES processor name

-- ES element type

-- # of nodes for this ES type

-- # of elements in x direction

-- # of elements in y direction

[2]> -- Edge # of constrained edge

-- Constrained dofs

[2]> -- Edge # of loaded edge

-- Load values

[2]> -- Load direction

-- x coordinate of first node

-- y coordinate of first node

-- Length in x

-- Length in y

-- Young's modulus

-- Poisson's ratio

) thickness

A Gene_ Inll_aOD Element lot COMET-AR 2-7

2. A Simpk) Analysis Exlunl_ June 22, 1994

2.2.3. Definition of Required Macrosymbols

Priorto defining the interface elements, a customized version of the file lnltlallze.clp (which has already

been copied into the working directory) should be created. This file contains a procedure which defines the

global macrosymbels used by various utility procedures. Wtdle these macrosymbols do not have to be

defined through this procedure, they must be defined prior to calling the control procedure, SS_comrol. It is

highly recommended that the user adjust the template file rather than attempt to incorporate the definitions

into other procedures or files elsewhere.

The folk)wing example of the Initialize procedure has been customized for this beam application. The
new user should note that each substructureis saved in its own database which has been assigned a unique

iogical device index (Idi) or library number. Fmlhermore, the interface element and master model database
file names and ldls are also unique. While the substructuremodels may be combined into a single database
file, this is not recommended due to the absence of node and element label capabilities. The interface ele-

ment and master model files and logical device indices must always be unique. That is, the interface ele-

ments must always be kept in a separate library(they are created in a new library).

*procedure Initialize

Sdef/i Num_SS == 2

Sdefli SS_List[I:<Num_SS>] == 1,2

Sdef/a SS_Lib_Name[1] == MODEIKSS_List[I]>.DBC

Sdef/a SS_Lib._Name[2] == MODEL<SSList[2]>.DBC

Sdef/a SS_Define Prc[1] == MODELI_DEF

Vdef/a SS_Define_Prc[2] == MODEL2_DEF

Sdef/i SS_Idi[I:<Num_SS>] == 1,2

Vdef/i SS_step[l:<Num_SS>] =: 0,0

Sdef/i SS_load_set[l:<Num_SS>] == 1,1

Sdef/i SS_con_set[l:<Num_SS>] == 1,1

Vdef/i SS_mesh[l:<Num SS>] == 0,0

Wdef/a EI_Proc == EII

Sdef/a EI_Lib_Name .= 'interface.dbc'

Sdef/a EI_Define_Prc == 'EI_Define'

Sdef/i EI_Idi == 4

Sdef/i EI_step == 0

Sdef/i EI Load_set == 1

Sdef/i EI_Con_set == 1

Sdef/i EI_mesh == 0

Sdef/a __Name == 'master.model'

Sdef/a Merge SS_Prc == 'Merge_SS'

Sdef/i MM_idi == 3

Sdef/i)_ step == 0

Sdef/i 1__Load_set == 1

Sdef/i MM Con set == 1

Sdef/i D_t_mesh == 0

• def/i auto_dof_sup == <true>

Sdef/i auto_drill == <false>

Sdef/i auto_triad == <false>

Vdefla Post_Prc == 'Post Test

_end

of SS

Id's for SS

Library file name SS1

Library file name SS2

Model definition procedure SSI

Model definition procedure SSI

idi for SSI and SS2

load step % for SSI and SS2

load set % for SSI and SS2

constr, set # for SSI and SS2

mesh id % for SS1 and SS2

IE processor name

IE library file name

IE definition procedure

IE logical device index

Load step % for IE's

Load set % for IE's

Constraint set % of IE's

Mesh # for IE's

Master model (MM) library file

MMgeneration procedure

MM logical device index%

MM step #

MM load set Q

MM constraint set %

MMmesh number

Auto dof suppression flag

Artificial drill stiffness flag

Auto nodal normal triads flag

Post-processing procedure

I !REQUIRED MACROSYMBOLDEFINmONUSER.ACTION I• Modity the Inltla#ze.clp file to reflect the current application

2-8 A Generic Inkellaoe Element for COMET-AR

2.2.4. Interface Element Definition

Once the substructure models have been generated, the user should proceed to the definition of the

interlace element(s). The file el_lMflne.clp (which was copied eadler into the current working directory)

should be modified to reflectthe current application.The following procedure is a version of this file which has

been customized for the beam application. Note that the interface element is defined by specifying substruc-

tures 1 and 2 and various parameters associated with the substructures. Referring to Figure 2.1, the user

may verify that the nodes along the interface for finite element .substructure1 are nodes 3, 6, 9, and 12 and
for finite element substructure2 are nodes 1,5, and 9 as shown inthe input list. This model does not require

that oonstraints be applied to the interface (either pseudo-nodes or alpha-nodes) as there are only two sub-

structures and they are ooplanar. The drillingdegree of freedom will therefore be suppressed automatically.A

detailed discussionof user inputto the El processor may be found in Chapter 7.

•procedure EI_Define

• Define Interface Elements

run EII

• Processor Resets

reset idi = <EI_Idi>

reset mesh = <EI_mesh>

reset step = <EI_step>

reset load_set = <EI_load_set>

reset cons_set = <EI_con_set>

Element Definitions

DEFINE ELEMENTS

EL_4ENT 1

SS 1 /LDI=I /FE /CONS=I

NODES = 3:12:3

SS 2 /LDI=2 /FE /CONS=I

NODES = 1:9:4

END_DEFINE
,end

I _I_rERFACE B,EMENTOEFINmON USER :_,CTION
• Edit the file el_define.clp to reflectthe current application I

A Generic _ Element Ior COMET-AR 2-9

2. A Simple/mmlym Example June 22, 1994

2.2.5. Merging the Substructures into a Master Model

The introduction of the interface element into the analysis creates new requirements on both the analysis

and the user. One of these requirements isthe creation of a master model. W_ each substructure in a poten-

tially different database file and the interface elements in yet another database file, a merge operation must

be performed in order to take advantage of the current COMET-AR assemblers and solvers.

This merge operation combines specified substructuresand the interface elements into a single master
model. There is a utility procedure called Merge_SS (within the file merge_ss.clp) which performs this

merge tor all of the substructures identified as active in the Inltlallze.clp file• If a selective merge is desired

(i. • only some of these substructures are to be merged for a given analysis) the Merge_SS procedure
should be modified to reflect the selected substructures•If all of the defined substructuresare to be meroed.

the user need do nothin_ the Ms_r_ SS Drocedure. The followingis a version of the procedure Merge_SS
which is described in detail in Section 6.2 and which may be used unaltered for this application.

• procedure Merge_SS

• Merge User-specified substructures into a single library

Run MSTR

. Define Substructures that will be merged

DEFINE SUBSTRUCTURES

• do $j = 1, <Num_SS>

• Finite Element Substructures

SUBstructure <SS_List[<$j>]> /fe

Library = <SS_idi[<$j>]>

Mesh = <SS_mesh [<$j >] >

Load_set = <SS_ioad_set [<$j>] >

Constraint_case = <SS_con_set[<$j>]>

Load_step = <SS_step[<$j>]>

*enddo

• Interface Element Substructure

SUBstructure <<SS_List[<$j>]>+l> /ie

Library = <EI_idi>

Mesh = <EI_mesh>

Load_set = <EI_load_set>

Constraint_case = <EI con_set>

Load step = <EI_step>

END_DEFINE

• Perform the Merge operation

MERGE <SS_List[l:<Num_SS>]>,<<Num_SS>÷l>

File

Library

Mesh

Load_set

Constraint_case

Load_step

ENDMERGE

STOP

"end

= <__name>

= <_q_l di >

= <_4_mesh>

= <HH_load.._set>

= <MM_con_set>

= <l_4_step>

• SS library numbers

• SS mesh numbers

• SS load set numbers

• SS constraint case numbers

• SS load step numbers

• Interface Element library

• Interface Element mesh

• Interface Element load set

• Interface Element constraint case

• Interface Element load step

Master model library file name

Master model idi number

Master model mesh

Master model load set

Master model constraint case

Master model load step

• Edit (as needed) the file merge_ss.c/p to reflectthe current application J

2-10 A Gene_ Intmlace Element lot COMET-AR

,k.,ne_, IS04 2.A Simp_AnJym Exa_

2.2.6. Running the Analysis

At this point, the models for the substructures, the interface elements, and the master model will have

been defined, and it remains only to prepare a script and to run the analysis. If procedure files have been

used for the model definitions and the macrosymboldefinitions(both userdesired and required), the script file

may look much like the following file. A script file template has been provided in SAR_EIPRC and is called

SS_control.com. As its name implies,this file is a template which contains the commands necessary to con-

trol the analysis. The user will have already copied this scriptfile intothe currentworking directory and should
modify it as needed for this application. The following is a version of the script SS_control.com which has

been modified for the current application.Typicaluser modificationsmay include changing file names, chang-

ing procedure names, and setting arguments to limitthe scope of the execution. The reader should note the

order of the calls to procedures. NI macrosymbol definitionprocedures must be called prior to calling the pro-

cedure named SS..control (see Section 3.2 for a complete discussion).This control procedure decides what
to do and how to do it based on the macrosymbols defined in the Initialize procedure and the arguments

passed through the call. The arguments are all logical/_ ._ either <true> or<f_,lse>) and tum on (<t:rue>)

or off (<4:alse>) the named functions. For example, if the argument DEFINE_SS is set to<true>, then all
substructures indicated by the SS • macrosymbols will be defined, ff DEFINE_SS is set to<t:,,lse>, then the

control procedure will assume that the substructuredefinitions have already been completed and that data

libraries exist which fully define the substructures.

rm proclib.gal DBdebug.dat

cp SAR_EIPRC/proclib.gal •

cometar << \endinput

•set echo off

ADD proper files;

• set plib = 28

•open 28 proclib.gal

eadd macros.clp

•add modell.clp

Sadd model2.clp

• add initialize.clp

• add beammodel.clp

• add ei define.clp

Sadd merge_ss.clp

set up the procedure library

/old

User macros

Model 1

Model 2

Required macros

Generic model definition

Interface element def'n.

Master model merge

• Define Macrosymbols needed for model generation

• call MODEL_PARAM

. Define Macrosymbols required by the interface element procedures

Define_SS = <true> ; --

Define EI = <true> ; --

Merge_SS = <true> ; --

Assemble = <true> ; --

Solve = <true> ; --

Post_Process = <false>)

Define substructures?

Define Interface elements?

Merge substructures?

Assemble master model?

Solve master model system?

Post process?

*call Initialize

*call SS control (

Run Exit

\endinput

..... :RUNNING AN ANALYSIS:USER ACTION:

• Edit the file SS_controLcom to reflectthe current application

• Run the script

• Post-process the results as desired

A Generic llrttorloce _ for COMET-AR 2-I I

2. A Simile kzm',/m Ezwnple June 22, 1994

THIS PAGE INTENTIONALLY BLANK

2-12 A Generic Inimla_ Element lot COMET-AR

June22,1904 IlLProcedures

Part I!1.

PROCEDURES

A Gonmdc mmmdaoo EkmrNN_lot_ET-AR

PRECEDING PAGE BLANK NOT FILMED

II1-1

IlLPmcldur_ June22,1994

THIS PAGE INTENTIONALLY BLANK

III-2 A Genehc I_ Element for COMET-AR

June22,1994 3.NewCon_olProcedures

11 New Control Procedures

3.1. Overview

This Chapter describes new COMET-AR command language procedures for controlling an analysis
which employs interface elements. A Section is dedicated to each of the procedures listed in Table 3.1.

Table 3.1. OuUine of Chapter 3: New Control Procedures

Section

2

Procedure

SS_control

3 Initialize

4 Post FE Stress

Function

Controls linear static analysis using interface elements

Initializes requiredmacrosymbols

Controlsstress recovery for substructures

Currently there is only one control procedure for analyses which employ interface elements, named

SS_control, and it is limitedto linear static analysis. This procedure invokes various additional procedures,

some of which must be written by the user. Subordinate procedures are described in subsequent Chapters;

examples of user-written procedures are provided as well. The procedure Initialize is considered a control
procedure in that it defines the macrosymbols which are used to control the analysis. The procedure

Post_FE_Streu controls the stress recovery operation and calls both master model and finite element pro-
cedures.

A Generic tnm Eimnem _or COMET-AR

PRECEDING PAGE BLANK NOT FILM_

3-1

3. New Control _ June 22, 1994

THIS PAGE INTENTIONALLY BLANK

3-2 A Generic Irmdaoe Element lot COMET-AR

June 22. 1994 3. New ConlrolProcedures

3.2. Analysis Control- Procedure SS_control

3.2.1. General Description

The procedure named SS..control which controls the analysis flow was introduced in Section 2.2.6. For

most users and applications, only a call to the control procedure, SS_¢ontml is needed to perform an

analysis. Procedure SS_control performs a sequence of calls to other procedures as shown in the Figure

3.1. In the Figure, ISS refers to the current substructure and nSS refers to the total number of substructures.

Only those boxes marked with shaded ends are user-written (or user-modified) procedures; all others are

utilities which will be executed automatically.

r-

Figure 3.1. Schematlc of SS_control: Analysis Control Procedure

A _ Into Elementlot COMET-AR 3-3

PRECEDING PAGE BLANK NO'[FILbIF...D

3. NewControlPro<mdums June22.1994

3.2.2. Argument Summary

Procedure SS_control may be invoked with the COMET-AR ,call directive, employing the arguments
summarized in Table 3.2, which are described in detail subsequently.

Table 3.2. Procedure SS_contmi Input Arguments (Logical order)

Argument

DEFINE_SS

Default Value

<false>

POST_PROCESS

Description

Define substructuresflag

<false>

DEFINE_El <false> Define interface elements flag

MERGE_SS <false> Merge substructureflag

ASSEMBLE <false> Assemble master system of equations flag

SOLVE <false> Solve master system of equations flag

Post-processingflag

3.2.3. Argument Definitions

In this subsection, the procedure arguments summarized in Table 3.2 are defined in detail. Note that

arguments are listed in logical order (i.e., the order of the analysis) rather than alphabetical order.

3.2.3.1 DEFINE_SS Argument

Define Substructures Flag. This flag turns on or off the model definition for all substructures.

Argument syntax:

] DEFINE_SS=def/ne_SS_f/ag]

where define_SS_flag may be set to either<t:rue> (if substructure model definition procedures are to be

executed) or <false> (if existing libraries are to be used for the substructure model definitions). When this

flag is set to <true>, procedures (named by the macrosymbol SS_Define_Pm[1:nSS]) which define the
substructures must be provided by the user. (Default value: <false>)

3.2.3.2 DERNE_EI Argument

Define Interface Elements Flag. This flag turns on or off the definitionof all interface elements.

Argument syntax:

I DEFINE_El =define_El_flag I

where define_El_flag may be set to either <true> (if interface element definition procedures are to be

executed) or <false> (if an existing library is to be used forthe interface element definitions). When this flag
is set to <true>, a procedure (named by the macrosymlx)l El_Define_Pro) which defines the interface

elements must be provided by the user. (Default value: <false>)

3-4 AGenel_InllrlaoeElementlot_-AR

June 22, lge4 3. New Control Procedures

3.2.3.3 MERGE_SS Argument

Merge Substructures Flag. This flag turns on or offthe merging of selected substructures and interface

elements into a single, master model.

Argument syntax:

MERGE_SS = merge_SS_flag J

where merge_S.R_flag may be set to either<l:rue> (if the merge procedure is to be executed) or <false> (if
an existing library is to be used for the merged master model). When this flag is set to_t:rue>, a procedure

(named by the macrosymbol I_rge_SS_Pm) which merges the substructuresinto a single master model must

be providedby the user. (Default value: <false>)

3.2.3.4 ASSEMBLE Argument

Assemble Global System Matrix and Vector Flag. This flag turns off or on assembly of the system

stiffness matrix and applied force vector.

Argument syntax:

ASSEMBLE = assemb/e fl&g i

l

where assemb/e_.f/ag may be set to either <t:rue> (if an existing assembly utility procedure is to be
executed) or <false> (if an existing library contains the assembled stiffness matrix and load vector). This

flag will trigger the execution of an existing utility procedure; no additional user action is required. (Default
value: <false>)

3.2.3.5 SOLVE Argument

Solve Global System of Equations Rag. This flag turns off or on the solutionof the global system of equa-

tions which has been reduced in size by the number of constraints applied to the system during assembly.
Once a solution for the reduced system has been obtained, the solution vector is expanded to include the

constrained degrees of freedom.

Argument syntax:

SOLVE = solve_flag J

where solve_flag may be set to either<true> CAthe existing solution utility procedure is to be executed) or

<false> (if an existing solution vector is to be used). This flag will trigger the execution of an existing utility

procedure; no additional user action is required. (Default value: <false>)

3.2.3.6 POST_PROCESS Argument

Post-processing Flag. This flag turns off or on the post-processing of selected substructures and/or the
master model.

Argument syntax:

[POSTPROCESS=post_process_flag J

where post_process_.flag may be set to either<true> (if the post-processing procedure is to be executed) or

<false> (if no post-processing is desired duringthe current execution). When this flag is set to <t:rue>, a
procedure (named by the macmsymbol Pozt_Pm) which provides the post-processing commands must be

providedby the user. (Default value: <false>)

A Gened¢ Inlmlaoe Element lot COMET-AR 3-5

3. NewControlPmoedmes June22, 1994

3.2.4. Database Input/Output Summary

Procedure SS_comrol can perform a complete analysis, from model definitions through solution post-

processing. As such, there are no inputdatasets for the initialexecution of the procedure. In general however,
the inputand output datasets depend on the arguments (i.e., depend on Whichportionof the analysis is being

performed during the current execution). A summary of the input and output datasets for each phase of the
analysis is included in the following Sections. In each of the followingTables, '_oS"signifies ":._Jb_tructure,"

"IE" signifies "Interface Element," and "MM" signifies "Master Model." In addition, the variables mesh, Idset,
and concase, are defined as mesh number, load set number and constraint case number, respectively.

SS_control
argument

DEFINE SS

DEFINE_El

3.2.4.1 Input Datasets

Table 3.3 contains a list of the datasets required as input for each phase of the analysis. A check mark

indicates that the clataset must (or _ in some cases) exist. Note that some datasets must appear in more

than one database file (Le., for each substructure). The column labeled "SS_contml argument" indicates that

the listed argument is set to <true> while all others remain<false>.

Table 3-% Input Datasets Required by Procedure SS_control

files

MERGE_SS

Dataset

None

CSM.SUMMARY...mesh

SS IE Description

!'

NODALCOORDINATE...mesh ¥

NODALDOF..concas_.mesh 1"

NODALSPEC_DISP./dseL.mesh 1"
NODAL.TRANSFORMATION...muh 1"

NODALTYPE...n---,,,_ 1" Nooe types

E/tName.DEFINITION...mesh

E/tName.ELTYPE...mesh

EltName.NODSS...mesh

EltName.NORMALS...mesh

E/Wame.PARAMS...mesh

E/Wame.SCALE...mesh

E/tName.SCOORD...mesh

E/tName.SSID...mesh

EttName.TANGENT_S...mesh

EitName.TANGENT_T...mesh

EItName.TGC...mesh

CSM.SUMMARY...mesh 1"

NODAl_COORDINATE...mesh 1"

NODAL.DOF..conca_.mesh 1" 1" Constraints

NODAL EXT_FORCE./dseL.mesh Y

NODALSPEC_DISP./d_et.concase.me_ Y

NODAL.TRANSFORMATION...mesh 1"

NODAL.TYPE...mesh 1" Node types

Model summary for inputSS

SS nodal coordinates

SS constraints

SS specifieddisplacements

Nodal global-to-local transformations

Y Y Element definition for input SS

Y Finite element types along each IE

Y SS connected to each node of each IE

Y Y IE and FE element nodal normals

Y IE parameters
Y Scale factor for each IE

Y Path coordinates for nodes on IE

Y Listof SS connected to each IE

Y IE path tangent vectors

1" IE surface tangent vectom

Y Computational-to-globaltransformations

Y Model summary

1" Nodal coordinates

Applied nodal forces

Specified displacements

Y Nodal global-fo-local transformations

3-6 AGenefioInterlaceElementlotCOMET-AR

June 22, lge4 3. New GonlrolProcedures

ASSEMBLE

SOLVE

POSTPROCESS

Table 3.3. Input Datasets Required by Procedure SS_control (Continued)

EltName.DEFINITlON...mash 1' 1' Element definitions

E/Wame.PARAMS...mash Y IE parameters

E/tName.MATRIX...mash Y Y Element stiffness matrices

Operation on Master Model; see COMET-AR User's Manual Assembly Processors

Opera#on on Master Model; see COMET-AR User's Manual Solution Processors

Opemt_ws user._f_d

3.2.4.2 Output Datasets

Table 3.4 contains a list of datasets that may be created or updated by procedure SS_control. A check

mark indicates that the dataset must (or m_ in some cases) exist. Note that while the input datasets come

from various different database files, each phase of the analysis only writes to a single database file. The col-

umn labeled SS_control argument indicates that the listed argument is set to <true> while all others

remain <fa.lse>.

SS control

argument

DEFINE_SS

DEFINEEI

Table 3.4. Datasets Output From by Proceclure SS_contml

Files

Dataset

CSM.SUMMARY...mash

NODALCOORDINATE...mesh

ass laN Description

Y Model summary for input SS

Y

NODAL DOF..concase.mesh Y

NODAL EXT FORCE./dseL.mesh 1"

NODALSPEC_DISP.MseL.mesh

NODAI_TRANSFORMATION...mesh

E/Wame. DEFINITION...mesh

E/Wame.MATRIX...mash

E/Wame.NORMALS...mesh

CSM.SUMMARY...mesh

NODAI_COORDINATE...mesh

NODAL DOF..concase.mesh

NODAl_TRANSFORMATION...mesh

NODAI_TYPE...mash

E/Wame. DEFINITION...mesh

E/tName. ELTYP E...mash

E/tName.NODSS...mesh

E/tName.NORMALS...mesh

E/Wame.PARAMS...mesh

EttNarne.SCALE...mash

EltName.SCOORD...mesh

E/Wame.SSID...mash

E/tName.TANG ENT_S...mesh

E/tName.TANG ENT_T...mesh

EItName. TGC...mash

SS nodal coordinates

SS constraints

SS applied nodal forces

SS specified displacements

SS nodal giobal-to-local transformations

Element definition for inputSS
SS Element stiffness matrices

SS Element nodal normals

Model summary for input SS

Y

Y

Y

Y

Y

Y

Y SS nodal coordinates

Y SS constraints

Y IE nodal global-to-local transformations

Y IE node types

1" Element definition for each IE

I' List of finite element types along each IE

1" List of SS connected to each IE

IE nodal normals

1" IE parameters

Y I Scale factor for each IE

Y, Path coordinates for nodes on IE

Y List of SS connected to each IE

Y IE path tangent vectors

Y IE surface tangent vectors

i Y Computational-to-global transtorrnations

A GenericIntedm::eElement lot COMET-AR 3-7

3. New_ ProceckJmS June22, 1994

Table 3A. Datalets Output From by Procedure SS_control (Continued)

MERGE_SS

ASSEMBLE

SOLVE

IPOST_PROCESS

CSM.SUMMARY...me#I

NODALCOORDINATE...mesh

NODALDOF..cotcme.mesh

NODALEXT_FORCE./d_¢.muh

NODALSPEC .DISP.k_et.c_case.mesh

NODALTRANSFORMATION...mesh

E/Wame.DEFINITION...mesh

_.MATRIX...meeh

1, Model summery

1, Nodal coordinates

1, Constraints

1, Applied nodal forces

1' Specified displacements

1' Nodal global-to-local transformations

Y Element definitions

1' Element stiffness matrices

Operatkmon MasterModel;see C,OMET-ARUser'sManuaJAssemblyPtocessom

OperationonMasterModel;see COMET-ARUser'sManualSolutionProcessors

Operations user-defined

3.2.5. Subordinate Procedures and Processors

3.2.5.1 Subordinate Procedures

A listof procedures invokeddirectlyby procedureSS control is provided in Table 3.5. Documentation of

these procedures may be found in the Sections listed.

Procedure

Initialize

SS model generation

Table 3.5. Procedures Subordinate to Procedure SS_contml

User-Written

Function

Define required mecrosymbels

Generate finite element models for substructures

Refer
to:

3.3

4.2ELDeflne User-Written Define interlace elements

Defn_B_Freedoms Utility Suppress unstiffened degrees of freedom 4.3

Form El_Stiffness Utility Form interlace element stiffness matrix

InlUalize FE Utility Initializefinite element substructures

Defn_FE Freedoms Utility Suppress unstifiened degrees of freedom for finite
- element substructures

Form FE Force Utility Formforce vectorfor finite element substructures

Utility

User-Written

Utility

Utility

Form_FIE_Stiffneu

Merge_SS

Form element stiffness metrices for finite element
substructures

Merge finite element substructures and interface
elementlil_'am3sinto a sJrl_le master model

Assemble single, master system of equations

Solvethe master system of equations

Ammmble_Muter

Solve_Master

4.4

5.2

5.3

5.4

5.5

6.2

6.3

6.4

3-8 A GenericI_ ElementfixCOMET-AR

June 22, 1904 3. New Conlrol Procedures

3.2.5.2 Subordinate Processors

Since the SS_control procedure may control an analysis from the model generation through post-

processing, all COMET-AR processors may be considered subordinate processors.

3.2.6. Current Limitations

SS control will only perform linear, static, nonadaptive analyses. Additional limitations and assumptions
are noted in Section 1.5.

3.2.7. Status and Error Messages

SS_control will not print any status or error messages directly. NI messages will be produced by the
processors being used inthe analysis. For specific errormessages, the user should refer to Chapter 7 for the

El processors, Chapter 8 for the MSTR processor, and the COMET-AR User's Manual (Ref. 3.2-1) for all
others.

3.2.8. Examples and Usage Guidelines

3.2.8.1 Example 1: A complete analysis

listed below is a sample script, includingUnix commands, for running a complete analysis, from model

definition through post-processingthe results. Files contain input runstreams and data as annotated.

cp $AR_EIPRC/proclib.gal .

cometar << \endinput

*set echo off

• Set up the procedure library

*set plib = 28

*open 28 proclib.gal /old

• Add User files

*add macros.clp

*add modell.clp

*add model2.clp

*add eidefn.clp

*add util.clp

*add post.clp

*add initialize.clp

• Initialize Macrosymbols

*call Initialize

• Call Control Procedure

*call SS_control (

Run Exit

\endinput

Define_SS = <true> ; --

Define_EI = <true> ; --

Merge_SS = <true> ; --

Assemble = <true> ; --

Solve = <true> ; --

Post_Process = <true>)

• Set procedure library idi

• open procedure library

add user macro definitions

add SS 1 definitions file

add SS 2 definitions file

add IE definitions file

add special utilities

add post-processing file

add initialization file

Define Substructures?

Define Interface Elements?

Merge Substructures?

Assemble global system?

Solve global system?

Post-process?

3.2.9. References

32-1 Stanley, G.M., Hudbut, B., Levit, I., Stehlin, B., Loden, W., and Swenson, L., COMET-AR User's
Manua/, LMSC Report #P032583, 1993.

A Generic Into Element lot COMET-AR 3-9

3. NewConl_ Pnxmdures June 22. 1994

THIS PAGE INTENTIONALLY BLANK

3-10 A Genedc Inmftlace Element for COMET-AR

June22, 1994 3. NewConlrolProceCJres

3.3. Macrosymbol Definitions- Procedure Initialize

3.3.1. General Description

Procedure Initialize is a procedure template which the user may copy and customize fir each

application. An example of the procedure is provided at the end of this Section. The macrosymbols defined in

procedure Initialize are _ fir any analysis using interlace elements. Should the user prefer, the
rnacrosymbols may be defined directly in the scriptfile (thus eliminatingthe need fir this procedure).

3.3.2. Macrosymbol Summary

The macrosymbols required by procedure SS_contml and its subordinate procedures and processors

are listed in Table 3.6. It is suggested that the user make use of the procedure template provided, although

this is not mandatory. The listed macrosymbols must however, be defined in some manner prior to calling

procedure SS control.

Table 3.6. Macrosymbols Required by SS..contml and Subordinate Procedures

Macro.symbol

Num_SS
SS_LiIt[I:NumSS]

SS_.Ub_.Narne[1:NumSS]
SS_Define_Prc(1:NumSS]

SS_ldi[1:NumSS]
SS_ltep[1 :NumSS]

SS_oon_let[1 :NumSS]
SS_load_xt[l:NumSS]

SS mesh[1 :NumSS]
EI_Pro¢

EILibName
El_Define_Pro
ELIdi

El_rap

El_Con_ut

ELLoad__t
EIjmmh
MM N=me

M _SS_Prc
MM_ldi
MM_mp

MM_Con_ut

MM_Load_Nt

MM_mesh
auto dof sup

auto_drill

auto Ulad
Post_Pro

Integer
Integer array

Character array !

Character array

Integer array
Integer array

Integer array
Integer array

Integer array
Character

Character

Character

Integer

Integer

Integer
Integer

Integer
Character
Character

Integer

Integer

Integer
Integer

Integer

Integer
Integer

Integer
Character

Definltlon

Total number of substructures
Listof substructure ld's (one per substructure)

List of substructurelibrary (file) names
List of substructure model definitionprocedures

List of substructure logical device indices
List of substructure load step numbers
List of substructure constraint set numbers
List of substructure load set numbers

List of substructuremash numbers

Interface element processor name
Interface element library (file) name

Name of procedurefor interface element definition

Logical device index fir interface element library
Load step number
Constraint set number

Load set number
Mesh number

Library (file) name for master model
Name of procedure for performing the merge

Logicaldevice index fir master model library

Master model load step number
Master model constraint set number

Master model load set number
Master model mesh number

Automatic drillingfreedom suppression flag

ArtificialdriUingstiffnessflag
Automatic nodaltriad construction flag

Postprocessingprocedure name

AGlmedcInto ElementforCOMET-AR 3-11

PRECEDING PAGE BLANK NOT FIU,_KF)

3. New Com_ Pmoedures June 22, 1994

3.3.3. Examples and Usage Guidelines

The following example is for an analysis which has a single interface element connecting two

substructures. In this case a procedure named Inltlallz4) is used to define the rnacrosymbois. The user

should referr to the CLAMP manual (Ref. 3.2-1) for an explanation of the;,def directive syntax.

•procedure Initialize

• Required Macrosymbol Definitions

Define Substructure parameters:

•def/i Num_SS == 2

•def/i SS_List[l:2] == 1,2

•def/p SS_Lib_Name[1] == modell.dbc

•def/p SS_Lib_Name[2] == model2.dbc

sdef/p SS_Define_Prc[1] == Model_l

•def/p SS_Define_Prc[2] == Model_2

•def/i SS_idi[l:2] == 1,2

•def/i SS_step[l:2] == 0,0

Sdef/i SS_con_set[l:2] == 1,1

•def/i SS_load_set[l:2] == 1,1

•def/i SS_mesh[l:2] == 0,0

• Define Interface element parameters:

•def/p EI_Proc

•def/p EI_Lib_Name

•def/p EI_Define_Prc

•def/i EI_idi

Sdef/i EI_step

•def/i EI con_set

•def/i EI_load_set

•def/i EI_mesh

== EII

== 'interface.dbc'

== 'EI_Define'

== 3

== 0

== 1

== l

== 0

• Define Master Model parameters:

•def/p MM_Name

•def/p Merge_SS_Prc

•def/i MM_ldi

•def/p MM step

•def/i MM_con_set

•def/i MM_load_set

•def/i MM_mesh

== 'master.model'

== °Merge_SS'

== 4

== 0

== l

== 1

== 0

Drilling freedom suppression flags

•def/i auto_dof_sup == <true>

•def/i auto_drill == <false>

•def/i auto_triad == <false>

• Miscellaneous macrosymbols:

•def/p Post Prc == 'Post_Test'

,end

• Number of substructures

• List of SS id numbers

• Library name for SS 1

• Library name for SS 2

• Model def'n SS 1

• Model def'n SS 2

logical device indices

load step numbers

constraint set numbers

load set numbers

• mesh numbers

PROCESSOR NAME

• Library name

I.E. definition procedure

logical device index

load step number

constraint set number

load set number

• mesh number

• Library name

• merge procedure name

logical device index

load step number

constraint set number

load set number

• mesh number

suppress freedoms?

• artificial stiffness?

• automatic nodal triads?

Post processing procedure

References

Felippa, Carlos A., The Computal/ona/ Slructural Mechanics Testbed Architecture: Volume II -

Directives. NASA Contractor Report 178385, FebnJary 1989.

3-12 A Generic Inlmtace Element lot COMET.AR

June22, 19Q4 3. New Gonlml Procedures

3.4. Stress Recovery Control- Procedure
Post FE Stress

3.4.1. General Description

Procedure Post_FE..Stress provides the user the options of recovering substructure element stress

resultants (at nodes, integration points, or centroids), substructure smoothed nodal stress resultants (pro-
vided element stress resultantdata exists in the substructure database), and master model smoothed nodal

stress resultants (provided substructurenodal stress resultant data exists in the substructure databases).

This control procedure may be executed by the SS_control procedure (see Section 3.2) provided the

Post_Prc macrosymbol has been set (.e., *def/p eost_erc = ' Post_FE_Stress ').

3.4.2. Argument Summary

Procedure Post FE_Stress may be invoked with the COMET-AR .call directive, employing the
arguments summarized in Table 3_, which are described in detail subsequently.

Table 3.7. Procedure Post_FE..Stress Input Arguments (functional order)

Argument

SPLIT_MM

Description

Flag indicating that substructure results
need to be spilt from the master model.

Delault Value

<true>

<true>

<true>

STRESS SS Flag indicating that substructure stress
- resultantsneed to be recovered.

NODAL_STRESS_MM

3.4.3. Argument Definitions

Flag indicating that a master model nodal
stress object should be formed.

In this subsection, the procedure arguments summarized in Table 32 are defined in detail. Note that
arguments are listed in alphabetical order.

3.4.3.1 SPLn'_MM Argument

Split Substhcture data from Master Model Flag. This flag turns on or off the function which takes the
solution from the master model and splitsout solution vectors for the substructures.

Argument syntax:

I SPLIT_MM=sp/__mm_f/ag J

where split_mrn_flag may be set to either<true> (if the master model solution is to be split into substructure
vectors) or<false> (if this step is to be skipped and substructuredisplacement vectors already exist). This

flag will trigger the execution of existing utility procedures; no additional user action is required. (Default

value: <tz_e>)

A Generic Into Element lot COMET-AR 3-13

3. NewConu_Procedures June22, 1904

3.4.3.2 STRESS_SS Argument

Calculate Substructure Stress Flag. This flag turns on or off the function which calculates substructure

stress resultants based on the solution recovered usingthe SPLIT_MM argument.

Argumentsyntax:

STRESS_SS - stress_ss_.flag

where stress_ss_flag may be set to either<true> (if the sub_mcture stress resultants are to be calculated)

or <false> (if this step is to be skipped and substructure stress resultants already exist or are not needed).

This flag will trigger the execution of existingutilityprocedures; no additional user action is required. (Default

value- <t:z-l.te>)

3.4.3.3 NODAL_STRESS_MM Argument

Calculate Nodal Stress Flag. This flag turns on oroff the function which calculates nodal stress resultants

based on the element stress resultants recovered using the STRESS_.SS argument.

Argumentsyntax:

I NODAL-STRESS-MM . n°da/-s/mss-mm I

where nodal_stress_ram may be set to either <true> (if the smoothed nodal stress resultants are to be

calculated) or <_alse> (if this step is to be sldpped and nodal stress resultants already exist or are not
needed). When <true>, this flag will create a nodal dataset in the substructure data libraries as well as the

master model library.This flag will triggerthe executionof existingutilityprocedures;no additional user action

is required. (Default value: <t:z_ze>)

3.4.4. Database Input/Output Summary

All database input and output requirementsfor this procedure are imposed by the MSTR, ES, and NVST

processors. The MSTR processor requirements are documented in Chapter 8 of this document while the ES

and NVST requirements are documented in Ref. 3.2-1.

3.4.5. Subordinate Procedures and Processors

Three procedures may be invoked by Post_FE..Streu: SplR_MM, Comp_FE_Streu, and

Comp_Nodal_Stress. The SplR. MM procedure calls only the MSTR processor. Comp_FE_Strus cells
only the ES processor for the appropriate finite element types. The Comp_Nodal_Stress procedure calls the

NVST and MSTR processors.

3.4.6. Current Limitations

Umitationson the procedure usage are, in general, dictated by the limitationson the MSTR (see Section

8), ES (see Ref. 3.2-1), and NVST processors. The user is referred to the documentation appropriate for each
processor. The one requirement of the procedure isthat the procedure Initlatize be invoked prior to the call to

Po__FE_Streu as several of the macrosymbols defined in Initialize are used dudng the calculation of the
stress resultants.

3-14 AGenericIntmlaceElementforCOMET.AR

June 22, 1904 3. New Conlrol Procedures

3.4.7. Status and Error Messages

Comp_FE_Stress will not print any status or error messages directly. All messages produced by the

MSTR (see Section 8), ES (see Ref. 3.2-1), and NVST processors.The user is referred to the documentation

appropriate for each processor.

3.4.8. Examples and Usage Guidelines

The Post FE St.ms procedure may be called from within SS control, however, it may also be used in
a stand-alone mode. In both cases, the procedureInitialize must be called before Post_FE_Stress is called.

The Post_FE_Streu procedure listingfollows:

*procedure Post_FE_Stress (Split_MM = <true>; Stress_SS = <true>; --

Nodal_Stress_MM = <true>)

This procedure is used to control the postprocessing of stress resultants

*if <[Split_MM]> /then

*remark ************

*remark *** Split Displacements from Master Model to FE Substructures

*remark ************

*call Split_MM

*endif

*if <[Stress_SS]> /then

*remark ************

*remark *** Compute Stresses for FE Substructures

*remark ************

*call Comp_FE_Stress

*endif

*if <[Nodal_Stress_MM]> /then

*remark ************

*remark *** Compute Nodal Stresses for FE Substructures and Merge

*remark *** Into Master Model

*remark ************

*call Comp_Nodal_Stress

*endif

*end

References

Stanley, G.M., Hudbut, B., Levit, t., Stehlin, B., Loden, W., and Swenson, L., COMET-AR User's
Manual, LMSC Report #P032583, 1993.

A Genel_ Into Element lot COMET-AR 3-15

3. New Control Prooedums June 22, lgg4

THIS PAGE INTENTIONALLY BLANK

3-16 A Gened¢ Inmta_ Element lot COMET-AR

June22,1994 4. Into ElementCoverPmoedums

11 Interface Element Cover Procedures

4.1. Overview

This Chapter describes new COMET-AR command language procedures which control the execution of

the interface element processor (processor El). A Section is dedicated to each of these procedures, which
are listed in Table 4.1.

Table 4.1. Outline of Chapter 4: New Interface Element Cover Procedures

Section

2

4

Procedure

El Define

Function

Template for user-written procedure which defines
interface elements

FormELSU r.m

3 Defn_El_Fmedoms Automaticallysuppresses inactive degrees of freedom

Forms interface element "stiffness"matrix

Cover procedures have been writtenfor each of the functions performed by the El processor. Rather than

one procedure which performs all tasks (as has been done with the ES processor), several procedures are

used, each of which performs an individualtask. While the ELDefine procedure must be written by the user,
the remaining two procedures, Defn_.ELFreedoms and Form_ELStlffneu, are utilityprocedures which are

automatically called by the SS_contml procedure. These two procedures, included here for completeness,
require no user action or interactionbeyondthe definitionof the macrosymbols described in Section 3.3.

A _ Inlmfa_ Element lot COMET-AR 4-I

PRECEDING PAGE BLANK NOT FILMED

4. Interfmoe Element Cover Przx:e(k_s June 22, 1994

THIS PAGE INTENTIONALLY BLANK

4-2 A Genedc Inlmta_ Bement for COMET-AR

June22,1994 4. Intm,faceElementCoverProcedures

4.2. Interface Element Definition - Procedure El_Define

4.2,1. General Description

Procedure ELI)efine is a procedure template which the user must copy and customize for each

application. An example of the procedure EIDefine, is listed in Table 4.2.

Table 4.2. Template for User-Defined Procedure El_Define

,procedure El_Define
, Define Interlace Elements

run El1

. Processor Resets
reset ldi = <El_ldi>
reset mesh = <El_mesh>
reset step = <El_step>
reset load_set - <El_Load_set>
reset cons_set = <El_Con_set>

• Element Deflnltlons

,end

DEFINE ELEMENTS

ELEMENT 1/DSPLINE,,<dspline>/SCALE-<scale>
*do $i =1, <Num_SS>

,def/i ssld= <SS_ld[<$i>]>
SS <ssid> /LDI=<SS_ldi[<ssid>]>/FE/MESH=<SS_mesh[<ssid>]>-

/CONS-<SS_con_set[<ssld>]>
NODES = <node_list[<ssld>]>/GSPLINE=<SS_geom[<ssid>]>

.enddo

For the case of multiple interface elements, the lines between the asterisk-filledlines should be repeated
for each additional interface element. NI of the macrosymbolsused above must be defined somewhere in the
runstmam and must be visible to this procedure (Le., they must either be global macrosymbols or have been

defined in the calling tree for this procedure). If procedure Inltlellze is used, the only additional macrosyrnbol

which must be defined prior to a call to this example of ELDefine is <Dode_list[l:<Num_SS>]> which
contains as character data a listof the nodes along the interface for each substructure.

The interface element is essentially defined by specifying the substructure edges along which a

connection is to be made. This definition may be performed by using the NODES option (as shown in Table

4.2), by specifying a series of coordinates through which a curve may be passed, or by specifying the two
nodes at either end of a straight line. In addition, boundary conditions may be applied to either the interface

pseudo-nodes or to the alpha-nodes attached to the substructures. The user is referred to Chapter 7 for a

complete explanation of the input.

4.2.2. Argument Summary

Users may choose to utilize procedure arguments however, the procedure SS_control will then also
need to be customized by the user. It is therefore recommended that required input parameters be defined

using macrosymbois rather than through procedure arguments.

A Generic_ El_aemtotCOMET-AR 4-3

PRECEDING PAGE BLANK NOT FILMED

4. I_ Element Cowm'_ June 22, 1994

4.2.3. Argument Definitions

See previous Section.

4.2.4. Database Input/Output Summary

All database input and output requirements for this procedure are imposed by the El processor being
executed. These database requirementsare documented indetail in Chapter 7.

4.2.5. Subordinate Processors and Procedures

B_Define has only one subordinate processor,the El processor of choice. Normally, there will also be no

need for subordinate procedures although the user may wish to define these for particularly complicated
models.

4.2.6. Current Limitations

B_Define is a user-written procedure. Limitationson the procedure usage are dictated by the limitations
of the El processor being used in the analysis. These limitations are documented in detail in Chapter 7.

Limitations on all El processors are discussedin Section 1.5.

4.2.7. Status and Error Messages

El_Define will not typically print any status or error messages directly (although the user may choose to
insert such messages). Error messages will be produced by the El processor being used in the analysis. The

user should refer to Chapter 7 for specificerror messages produced by these processors.

4.2.8. Examples and Usage Guidelines

4.2.8.1 Example 1: Define a Single Interface Element connecting Two Substructures.

In this example, substructure 1 resides in library 1 and substructure2 resides in library 2. Both are finite
element substructures. The interlace element is written to library 3 and connects nodes 1, 3, 5, and 7 of

substructure 1 to nodes 25, 30, 35, 40, 45, and 50 of substructure2 using cubic spline functions for both the

geometry and displacement of a hybrid variational interface element. No constraints have been defined.

*procedure EI_Define

• Define Interface Elements

run EI1

• Processor Resets

reset idi

reset mesh

reset step

reset load_set

reset cons_set

• Element Definitions

DEFINE ELEMENTS

ELEMENT I /DSPLINE=3

=3

= 0

*end

= 0

= 1

= 1

SS

SS

END_DEFINE

1 /LDI=I /FE /MESH=0 /CONS=I

NODES = 1:7:2 /GSPLINE=3

2 /LDI=2 /FE /MESH=0 /CONS=I

NODES = 25:50:5 /GSPLINE=3

4-4 A Generic Irm_ Bmnent lor COMET-AR

Jum}_, 1904 4. Inaorfzic_Elomont Covw Pfooodums

4.2.8.2 Example 2: Define two Interface Elements each connecting Two
Substructures.

In this example, substructure 1 resides in library 1, substructure2 resides in library 2, and substructure 3

resides in library 3. All are finite element substructures. The interface elements are written to library 4. The

first hybrid variational interface element connects nodes 1, 3, 5, and 7 of substructure 1 to nodes 25, 30, 35,
40, 45, and 50 of substructure 2 using cubic spline functions for both geometry and displacement. The
second element connects nodes 35, 37, 39, 41, 43, and 45 of substructure 1 to nodes 110, 120, 130, 140,

150, and 160 of substructure 3 again usingcubic splirmfunctionsfor both the geometry and displacement of
the interface element. No constraints have been defined.

•procedure EI_Define
• Define Interface Elements

run EI1

Processor Resets

reset ldi = 4

reset mesh = 0

reset step = 0

reset load_set = 1

reset cons_set = 1

Element Definitions

DEFINE ELEMENTS

ELEMENT 1 /DSPLINE=3 /CURVED

SS 1 /LDI=I /FE /MESH=0 /CONS=I

NODES = 1:7:2 /GSPLINE=3

SS 2 /LDI=2 /FE /MESH=0 /CONS=I

NODES = 25:50:5 /GSPLINE=3

EL_4ENT 2 /DSPLINE=3 /SCALE-10000. /CURVED

SS 1 /LDI=I /FE /MESH=0 /CONS=I

NODES = 35:45:2 /GSPLINE=3

SS 3 /LDI=3 /FE /MESH=4 /CONS=2

NODES = 110:160:10 /GSPLINE=3

END_DEFINE

,end

4.2.9. References

Norm.

A Genedc Into Element for COMET-AR 4-5

4. Inlmrla_: El_rmnt Cover l:_x_eJnlS June 22, 1994

THIS PAGE INTENTIONALLY BLANK

A Generic Inaodo_ Element lot COMET-AR

June 22, 1904 4. Inaoda¢_ElementCorot Procedures

4,3, Interface Element Drilling Freedom Suppression -
Procedure Defn El Freedoms

4.3.1. General Description

Procedure Defn_El_Freedoms is a utility procedure for performing automatic degree-of-freedem

suppression on the new nodes (pseudo-nodes and alpha-nodes) introduced by the interface element(s). It is

automatically invoked by the solution control procedure SS_control, and requires no user action or

interaction beyond the definition of the required macrosymbois (see Section 3.3).

4.3.2. Argument Summary

There are currently no arguments to this procedure. It is assumed that the macrosymbols discussed in

Section 3.3 have been defined and exist as macrosymbols visible to the SS_control procedure.

4.3.3. Argument Definitions

See previous Section.

4.3.4. Database Input/Output Summary

All database input and output requirements for this procedure are imposed by the El processor being

executed. These dataset requirements are documented in detail in Chapter 7.

4.3.5. Subordinate Processors and Procedures

Defn_El_Freedoms has only one subordinate processor, the El processor of choice. It has no subordi-

nate procedures.

4.3.6. Current Limitations

LimItations on the procedure usage are dictated by the limitations of the E! processor being used in the

analysis. These limitations are documented in detail in Chapter 7. Limitations on all El processors are dis-

cussed in Section 1.5.

4.3.7. Status and Error Messages

Defn El Freedoms will not print any status or error messages directly. All messages will be produced by

the El processor being used in the analysis. The user should refer to Chapter 7 for specific error messages

produced by these processors.

A GenericInlmtaceElementlot COMET-AR 4-7

PRECEDING PAGE BLANK NOT FILMED

4. Inmrlaee Element Cover Procedures June 22, 1994

4.3.8. Examples and Usage Guidelines

The determination of the active degrees-of-freedom for the pseudo-nodes and the alpha-nodes is

currently made by the interface element processor during the definition of the elements. In the present

implementation, the computational frame for both the pseudo-nodes and the alpha-nodes are defined so that

the drilling degree-of-freedom is always the sixth degree-of4reedom. During the element definition, two

parameters are set, Drlll_Dof and Dr, ISup, and saved in the EAT EItName.PARAMS...mesh (see Section
10.3 for a description of this data object). The parameter Drlll_Dof is set to six. The parameter Drill_Sup, is

a flag which indicates whether or notthe Drlll_Dof degree of freedom is to be suppressed.

The decision to suplxess the drilling degree-of-freedom is made based on two criteria. First, the

suppression need occur only if the interface element connects two substructures, as mere than two
subsUtK:tures cannot be coplanar. Second, if the difference between either substructure normal and the

average normal is greater than one degree, the drillingdegree-of-freedom is not flagged for suppression (Le.,

Drill_Sup is set to<false>). If the difference between each substructure normal and the average normal is

withinone degree, the drillingdegree-of-freedom is flaggedfor suppression (i.e., Drill_Sup is setto<true>).
Note that while the decision to suppress or not suppress degrees-of-freedom is made automatically during

the element definition, the procedure De#n_El_Freedoms performs the actual suppression of any inactive
freedoms.

The Deln_ El_Freedoms procedure is called automatically.A listing of the procedure has been provided
for completeness. The user should refer to Chapter 7 for a full description of the processor input.

•procedure Defn_EI_Freedoms

Suppress inactive degrees of freedom

run <EI_Proc>

Processor Resets

reset idi = <EI_Idi>

reset mesh = <El_mesh>

reset step = <EI_step>

reset load_set = <El_load_set>

reset cons_set = <El_cons_set>

Issue command to set active freedoms

DEFINE FREEDOMS

STOP

,end

4.3.9. References

None.

4-8 A Gone.c Interlaoe Eklment lot COMET.AR

June22, 1994 4. tnm ElementCoverProcedures

4.4. Interface Element Stiffness Matrix Generation -
Procedure Form El Stiffness

4.4.1. General Description

Procedure Form_El_Stiffness is a utilityprocedure for forming the interface element stiffness matrices.

It is invoked automatically by the solutioncontrol procedure _ntml, and requires no user action or inter-

action beyond the definition of the required macrosymbols (see Section 3.3).

4.4.2. Argument Summary

There are currently no arguments to-this procedure. It is assumed that the macr°symb°/s discussed in

Section 3.3 have been defined and exist as macrosymbols visibleto the SS_contml procedure.

4.4.3. Argument Definitions

See previous Section.

4.4.4. Database Input/Output Summary

NI database inptd and output requWementsfor this procedure are imposed by the El processor being
employed. These dataset requirements are documented indetail in Chapter 7.

4.4.5. Subordinate Processors and Procedures

Form_El_Stiffness has only one subordinate processor, the El processor of choice. It has no subordi-
nate procedures.

4.4.6. Current Limitations

Limitations on the procedure usage are dictated by the limitationsof the El processor being used in the
analysis. These limitationsare documented in detail in Chapter 7. Limitationson all El processors are docu-
mented in Section 1.5.

4.4.7. Status and Error Messages

Form_ELStlffness will not printany status or error messages directly.NI messages _11be prockJcedby

the El processor being used in the analysis. The user should refer to Chapter 7 for specific error messages
produced by these processors.

A GenericInto ElementforCOMET-AR 4-9

4. ine,'tKo [llmlm Cowr _$ June _. 1994

4.4.8. Examples and Usage Guidelines

The Form_El_Stlffneu procedure, called automatically from within the SS_control procedure, will

tngger the formation of all element stiffness matnces for elements created by the specified El processor. As

with the Deln_ELFreedoms procedure, the user need only ensure that the macrosymbols defined in

procedure Initialize (see Section 3.3) are visibleto the SS_control procedure. A listing of the procedure has

been provided for completeness. The user should refer to Chapter 7 for a full description of the processor

input. ..

•procedure Form_EI_Stiffness

• Form interface element stiffness matrices

run <EI_Proc>

• Processor Resets

reset ldi = <EI_ldi>

reset mesh = <EI_mesh>

reset step = <EI step>

reset load_set = <EI_ioadset>

reset cons set = <EI_cons_set>

• Issue command to set active freedoms

FORM STIFFNESS/MATL

STOP

,end

4.4.9. References

None.

• 10 A Genericlnlm'laceElementtlorCOMET-AR

June22, 1994 5. FiniteEk)mentAnalysisProcedures

11 Finite Element Analysis Procedures

5.1. Overview

This Chapter describes new COMET-AR command language procedures which replace the standard

finite element analysis procedures when performing an analysis with interface elements. The use of these
procedures is cornaletelv masked from _ user providedprocedure SS_control is used to perform the anal-

ysis. No user action is requiredtor these utilitiesother than that the appropriate macrosymbols be defined.

A Section is dedicated to each of these replacement ut,ity procedures, which are listed in Table 5.1.

Table 5.1. Outline of Chapter 5 : New Finite Element Analysis Procedures

Section

2

Procedum

Initialize FE

Function

Initializesfinite element databases

3 Defn_FE..Freedoms Automaticallysuppresses inactive degrees of freedom

4 Form FE_Force Forms finiteelement applied force vector

5 Form_FE_Stifllness Forms finiteelement stiffness matrices

6 Comp_FE_Stmss Computes element stress resultantdata

Comp_NodaLStress7 Computes smoothed nodal stress resultant data

Most of the procedures discussed in this Chapter use arguments named MESH (which defines the mesh

number of the finite element model) and STEP (which defines the nonlinear load step number). While the

interface element does not currently have either adaptive or nonlinear capabilities, these two arguments are
used to identify data object names within COMET-AR and are included for consistency with existing

procedures and processors (e.g., L_STATIC_I, ASM). Both MESH and STEP will usually be zero (the

default values). It should be noted however, that the interface element could be used to couple finite element
models for which neither MESH nor STEP are zero providedonly a linear analysis is performed. For example,

an analyst may wish to perform a coupled linear analysis of two models which have each been through an

adaptive analysis resulting in a final nonzero mesh for each model. In this case, the SS_mesh[l:2]
macmsyrr4x)ls would be set to nonzero mesh numbers corresponding to the desired mesh numbers in each
adaptive analysis.

AGenericInto ElementlotCOMET-AR 5-1

5. F,_m Element Anal_s _ ,kme 22. 1994

THIS PAGE INTENTIONALLY BLANK

5-2 A Generic inle'lm= Eletent tot _-AR

June 22, 1994 5. FirdJll EJernent Analysis Procedures

5,2, Finite Element Initialization- Procedure
Initialize FE

m

5.2.1. General Description

The initialization process for finite element analysis (in COMET-AR) consists of several phases: initializ-
ing data structures; reordering of nodes for optimal bandwidth,:fill or profile; generating the proper equation

numbers based on the new nodal ordering and constraints; suppressing inactive degrees-of-freedom. W'eh

the addition of the interface element capability, the initializationprocess must be done separately for each
substructure and the reordering of nodes or equations must occur after the interface elements have been

defined. Thus, the original COMET-AR finite element initializationprocedure is no longer adequate and has
been split into its components. The data structure initializationis performed by the procedure Inltlalize_FE

which executes the ES processors. Other functions are performed later in the analysis using additional new

procedures, each of which is documented in later sections. Inltlalize_FE is called automatically by

SS_control (see Section 3.2) using macrosymbols defined in the Initialize procedure (see Section 3.3).

5.2.2. Argument Summary

SS_control invokes procedure Inltlallze_FE with the COMET-AR ,,call directive, employing the argu-
ments summarized in Table 5.2, which are described in detail subsequently.

Table 52. Procedure Inltiallze_FE Input Arguments

Argument

LDI

MESH

Default Value Description

1 Logical device index

0 Mesh number of model to be initialized

5.2.3. Argument Definitions

In this subsection, the procedure arguments summarized in Table 5.2 are defined in more detail. Note

that arguments are listed in alphabetical order.

5.2.3.1 LDI Argument

Logical Device Index. This argument is the logical unitfor the database containingthe model data for the

substructure being processed.

Argument syntax:

I LDI =/di I

where the integer /di must be set to an appropriate, active library number. Procedure SS_control (see

Section 3.2) passes a macrosymbol, SS_ldi[I], throughthis argument for each substructure I defined by the

user. (Default value: z)

A Gem_ Inmdm_ Element lot COMET.AR

PRECEDING PAGE BLANK NOT FILMED

5-3

S. Rn_ ElementAnaJymPrmadums June22, 1994

5.2.3.2 MESH Argument

Mesh Nurr_er. This argument identifies the number of the finite element mesh to be processed within
library/di.

Argument syntax:

I MESH = mesh I

where the integer mesh must be set to a valid mesh number. Procedure SS_control (see Section 3.2)

passes a macrosymbol, SS_mmh[i], through this argument for each substructure I defined by the user.
(Defaultvalue:None)

5.2.4. Database Input/Output Summary

NI database input and output requirements for this procedure are imposed by the ES processor being
employed. The detaset requirement for the Initialize command of the ES processors may, be found in the
COMET-AR User's Manual (Ref. 5.2-I).

5.2.5. Subordinate Processors and Procedures

InlUalize_FE has two subordinate procedures, CSMget and ES. While Initlalize_FE has no directly sub-

ordinate processors, procedure ES does execute the ES processor. CSMget interacts directly with the data-
base.

5.2.6. Current Limitations

Inltlalize_FE is a general purpose procedure and the only limitationson its usage are dictated by the lim-

itations of the ES processor being employed. The user should refer to the Element Processor Chapters of the
COMET-AR User's Manual (Red. 5.2-1) for specificprocessor limitations.

5.2.7. Status and Error Messages

Inltlallzo_FE does not print any status or error messages directly. NI messages will be produced by the

ES processor being employed. The user should refer to the Element Processor Chapters of the COMET-AR
User's Manual (Ref. 5.2-1) for specific processor limitations

5-4 A Genetic InlBrlla_ Element for COMET-AR

June 22, 1994 5. Rnite Element Analysis Pmcedlures

5.2.8. Examples and Usage Guidelines

The Inltlallze_FE procedure, called automaticallyfrom withinthe SS_control procedure, will initialize all

finite element types within a specific substructure.The SS_control procedure calls Inltlalize_FE with the

appropriate macrosymbols substitutedfor the two arguments. The user need only ensure that the macrosym-

bois defined in procedure Initialize (see Section3.3) are visibleto the SS_control procedure. A listingof the

Inltlalize_FE procedure follows.

"procedure Initialize_FE (ldi = 1; mesh = 0)

Initialize Finite Element configurations

• Retrieve element type names and processor names

*call CSMget (idi=[idi]; mesh=[mesh]; attrib=NET; macro=ES_NET

,do Set = 1, <ES_NET>

*call CSMget (idi=[ldi]; mesh=[mesh]; iet=<$et>; --

attrib=EltTyp; macro=ES_PROC[<$et>])

,call CSMget (idi=[ldi]; mesh=[mesh]; iet=<$et>; --

attrib=EltPro; macro=ES_TYPE[<Set>])

,enddo

Call ES procedure to initialize finite element data objects

,call ES (function = 'INITIALIZE'; mesh=[mesh])

*end

5.2.9. References

5.2-1 Stanley, G.M., Hudbut, B., Levit, I., Stehlin, B., Loden, W., and Swenson, L., COMET-AR User's
Manual, LMSC Report#P032583, 1993.

A GlmecbmEleatentbrCOMET-AR _5

5. _ Element Analysis Procedures June 22. 1994

THIS PAGE INTENTIONALLY BLANK

5-6 A Generic Irmdraoe Element foeCOMET-AR

June22,Ige4 S._ ElementAnalysisProcedures

5,3, Finite Element Drilling Freedom Suppression -
Procedure Defn FE Freedoms

5.3.1. General Description

The suppression of the drillingfreedoms normally occurs in the solutionprocedure for linear static analy-

sis, procedure L_STATIC_I (Ref. 5.2-1). Due to the introductionof the intedace element, this solution proce-

dure no longer exists and its functions have been distributed among several procedures. Procedure

Defn_FE_Freedoms operates on a single finite element substructureand thus is called once for each finite

element substructure inthe system. This procedure is automatically called from within procedure SS_control

(see Section 3.2) using macrosymbols defined in procedure Initialize (see Section 3.3).

5.3.2. Argument Summary

SS_control invokes procedure Deth_FE_Freedoms with the COMET-AR .call directive, employing the

arguments summarized in Table 5.2, which are described in detail subsequently.

Table 5.3. Procedure Defn FE Freedoms Input Arguments

Argument

AUTO_DOF_SUP

Default Value

<true>

Description

Auto. dof suppression flag

AUTO_DRILL <f:alse> Artificialdrillingstiffness flag

AUTO_TRIAD <false> Auto nodal triads flag

CONSTRAINT_SET 1 Constraintset number

LDI 1 Logical device index

MESH 0 Mesh number of model

5.3.3. Argument Definitions

In this subsection, the procedure arguments summarized in Table 5.2 are defined in detail. Note that
arguments are listed in alphabetical order.

5.3.3.1 AUTO_DOF_SUP Argument

Automatic Degree of Freedom Suppression Flag. This argument is a flag which indicates whether or not
unstiffened degrees of freedom are to be suppressed automatically.

Argumentsyntax:

AUTO_DOF_.SUP- auto_dof_sup_flag I

where auto_dof_sup_flag may be set to either <r-cue> or <f*,lse>. A value of <r-cue> indicates that
unstiffenedfreedoms should be suppressed; a value of <false> indicatesthat those freedoms should not be
suppressed. SS_control (see Section 3.2) passes a macrosymbol, auto_dof_sup, through this argument.

(Default: <r.cue>)

A GenericIntsrlaceElementlotCOMET-AR 5-7

pi_ECEDING PAGE BLANK NOT FILIVi_[:;

5. Fin ElementAna_/mF_xadum$ June22. 1994

5.3.3.2 AUTO_DRILL Argument

Automatic DrillingStiffness Flag. This argument is a flag which indicates whether or not artificial stiffness
should be added to unstiffened drillingdegrees of freedom.

Argumentsyntax:

[AUTO_DRILL=auto_drill_flag l

where a__dr///_flag may be set to either <true> or <false>. A value of <true> indicates that artificial

stitfness should be added to unstiffened drillingdegrees of freedom. A value of <false> indicates that no
artificial stiffness should be added. SS_control (see Section 32) passes a rnacrosymbol,auto_dr, I, through

this argumeRt. (Default: <false>)

5.3.3.3 AUTO_TRIAD Argument

Automatic Triad Generation Flag. This argument is a flag which indicates whether or not average nodal

normal triads should be generated. Once generated, these triads define the new computational reference
frames for the finite element nodes.

Argument syntax:

AUTO_TRIAD = auto_triad_flag

where auto_triad_flag may be set to either<true> or <false>. A value of<true> indicates that new nodal

normal triads should be computed. A value of <false> indicates that no new triads should be formed.

SS_control (see Section 3.2) passes a macrosymbol, auto_triad, through this argument. (Default:
<f_tlse>)

5.3.3.4 CONSTRAINT. SET Argument

Constraint set number. This argument identifiesthe constraintset number for the substructure being pro-
cessed.

Argumentsyntax:

CONSTRAINT_SET = constraint_set I

where the integer constraint_set must be set to a valid constraint set number. SS_control (see Section 3.2)

passes a macrosymbol, SS_con_set[I], throughthis argument for each substructureI. This macrosymbol is

one of the required macrosymbols discussed in Section 3.3. (Default value: 1)

5-8 A Generic Intm/moe_ lot COMET-AR

June22, 1904 5. FiniteElementAnalysisP_res

5.3.3.5 LDI Argument _

Logical Device Index. This argument is the logical unit for the database containing the model data for the

substructure being processed.

Argumentsyntax:

LDI =/di J

where the integer/di must be set to an appropriate active library number. SS_control (see Section 3.2)

passes a macrosymbol, SS_klI[I], through this argument for each substructure I. This macrosymbol is one of

the required macrosymbols discussed in Section 3.3. (Default value: 1)

5.3.3.6 MESH Argument

Mesh Number. This argument identities the number of the mesh to be processed within library k)'i.

Argumentsyntax:

[MESH=mesh J

where the integer mesh must be set to a valid mesh number. SS_control (see Section 3.2) passes a

macrosymbol, SS_mesh[I], through this argument for each substructure I. This macrosymbol is one of the

required macrosymbols discussed in Section 3.3. (Default value: 0)

5.3.4. Database Input/Output Summary

All database input and output requirements for this procedure are imposed by the subordinate processors

and procedures. These dataset requirements are documented in the appropriate sections of the COMET-AR

User's Manual (Ret. 5.2-1).

5.3.5. Subordinate Processors and Procedures

Defn_FE__Fmedoms calls the utility procedure ES and executes the processor COP. ff the AUTO_TRIAD

argument has been set to <true>, then the processor TRIAD will also be executed. The subordinate proce-

dure and processors are documented in the COMET-AR User's Manual (Ref. 5.2-1).

5.3.6. Currant Limitations

Limitations on the procedure usage are dictated by the limitations of the ES, TRIAD, and COP proces-

sors. These limitations are documented in the COMET-AR User's Manual (Ref. 5.2-1).

5.3.7. Status and Error Messages

Defn_FE Freedoms will not print any status or error messages directly. All messages will be produced

by the ES, TRIAD, and COP processors. The user should refer to the COMET-AR User's Manual (Ret. 5.2-1)

for specific error messages produced by these processors.

A GenericInlm'laceElementfor COMET-AR 5-9

5. _ Element AneJysis Prm:odums June 22. 1994

5.3.8. Examples and Usage Guidelines

The macrosymbois auto_dof..sup, auto_drill, and auto_trisd (defined within procedure Initialize)

determine which 1unctions are performed within Defn_FE Freedoms. The Defn_FE_Freedoms procedure

is called automatically by the SS_control procedure. A listingof Defn_FE_Freedoms follows.

*procedure Defn_FE_Freedoms (auto_dof_sup=<true>; auto_drill:<false>; --

auto_triad=<false>; constraint_set=l; Idi=l; mesh=0)

• Perform drilling stiffness suppression as specified

• Define nodal flags for drilling stiffness (AUTO_DRILL Option)

edef/i auto_drill[l:3] = 0

Sdef/i auto_drill[i] = [auto_drill]

edef/i auto_drill_o = <auto_drill[i]> . Option

• def/i auto_drill_t = <auto drill[2]• . Tolerance (degrees

• def/i auto_dri11_s = <auto_drill[3]• . scale factor

• if < <auto_drill_o• • /then

• call ES (function = 'DEFINE NORMALS'; mesh=[mesh])

• call ES (function = 'DEFINE DRIL_FLAGS'; mesh=[mesh] --

drill_tol = <auto_drill_t>)

8endif

• Replace Current Triads with Avg. Normal-Aligned Triads (AUTO_TRIAD)

• def/i auto_triad[l:2] = 0

• def/i auto_triad[l] = [auto_triad]

• def/i auto_triad_o = <auto_triad[l]• . Option

Odef/i auto_triad_t = <auto_triad[2]> . Tolerance (degrees)

• if < <auto_triad_o> • /then

• call ES (function = 'DEFINE NORMALS'; mesh=[mesh])

• call ES (function = 'DEFINE DRIL_FLAGS'; mesh=[mesh] --

Run Triad

LDI = [idi]

MESH = [mesh]

GO

eendif

• Suppress Un-stiffened Degrees of Freedom (AUTO_DOF_SUP)

edef/i auto_dof[l:2] = 0

edef/i auto_dof[l] = [auto_dof_sup]

edef/i auto_dof_o = <auto_doll1]• . Option

edef/i auto_dof_t = <auto_doll2]> . Tolerance (degrees)

eif < <auto_dof__o• > /then

• call ES (function = --

"DEFINE FREEDOMS [Idi], NODAL.ELT_DOF..[constraint_set].[mesh]'; --

mesh=[mesh]; drill_tol=<auto_dof_t>)

eendif

• Construct Nodal DOF Table (Number Equations)

Run COP

MODEL [idi] CSM.SUMMARY...[mesh]

• if < [auto_dof_sup] > /then . UPDATE

DOFSUPPRESS INPUT =[idi],NODAL.ELT_DOF..[constraint_set].[mesh] --

DOFDAT=[Idi] [constraint set] [mesh]

Sendif

SELECT OLD [Idi] [constraint_set] [mesh] DOFDAT

CONSTRAIN

RESET ZERO = NO

RESET NONZERO = NO

DONE

STOP

*end

References

Stanley, G.M., Hurlbut, B., Levit, I., Stet_in, B., Loden, W., and Swenson, L., COMET-AFI User's
Manua/, LMSC Report #P032583, 1993.

5-10 A Generic Inmrfaoo Element for COMET-AR

June22. 1994 5. FiniteElementAnalysisProcedures

5,4, Finite Element Consistent Load Definition -
Procedure Form FE Force

5.4.1. General Description

Procedure Form_FE_Force calculates consistentnodal forces based on inputelement and nodal forces.

The procedure operates on a singlefinite element substructureand thus is called once for each finite element

substructure in the system. This procedure is called automatically from within procedure SS_Control (see

Section 3.2) using macrosynt:x)lsdefined inthe Initialize procedure (see Section 3.3).

5.4.2. Argument Summary

SS_control invokes procedure Form_FE_Force with the COMET-AR ,call directive, employing the
arguments summartzad in Table 5.2, which are described in detail subsequently.

Table 5.4. Procedure Form_FE_Force Input Arguments

Argument

LDI

LOAD_.SET

MESH

STEP

Default Value

None

Description

Logicaldevice index

None

None Load set number

None Mesh number of model

Nonlinear load step number

5.4.3. Argument Definitions

In this subsection, the procedure arguments summarized in Table 5.2 are defined in detail. Note that
arguments are listed in alphabetical order.

5.4.3.1 LDI Argument

Logical Device Index. This argument is the logicalunit for the database containing the model data for the

substructure being processed.

Argument syntax:

LDI =/di

where the integer/di must be set to an appropriate active library number. SS_control (see Section 3.2)

passes a macrosymbol, SS_IdI[I], through this argumentfor each substructure I. This macrosymbol is one of
the required macrosymbois discussed inSection 3.3.(Default value: None)

A GenedcInWrlaceElememforCOMET.AR 5-11

S._ _t AnalysisPmmdUms June22. 1994

5.4.3.2 LOAD_SET Argument

Load set number. This argument identifiesthe load set number for the substructure being processed.

Argument syntax:

LOAD_SET = load_set

where the integer load_set must be set to a valid load set number. SS_control (see Section 3.2) passes a

_syrnbol, SS_load_lmt[I], throughthis argument for each substructureI. This macrosymbol is one of the

required macrosymbols discussed in Section 3.3. (Default value: None)

5.4.3.3 MESH Argument

Mesh Number.This argument identifiesthe numberof the mesh tobe processedwithinthe library/di.

Argumentsyntax:

MESH = mesh

where the integer mesh must be set to a valid mesh number. SS_¢ontrol (see Section 3.2) passes a
macrosymbol, SS_mesh[I], through this argument for each substnJctureI. This rnacrosymbol is one of the

required macrosymbols discussedin Section 3.3. (Default value: None)

5.4.3.4 STEP Argument

Nonlinear load step number. This argument identifies the load step number for the substructure being

processed.

Argumentsyntax:

STEP= load_step

where the integer load_slep must be set 1oa valid load set number. SS_control (see Section 3.2) passes a
macrosymbol, SS_step[I], through this argument for each substructure i. This macrosymbol is one of the

required macrosymbols discussed in Section 3.3. (Default value: None)

5.4.4. Database Input/Output Summary

All database input and output requirementsfor this procedure are imposed by the subordinate processors

and procedures. These dataset requirements are documented in the appropriate sections of the COMET-AR

User's Manual (Ref. 5.2-1).

5.4.5. Subordinate Processors and Procedures

Form_FIE_Force calls the utilityprocedure FORCE which in tum calls the utility procedure ES. The ES

procedure executes finally the ES processor. These procedures and processor are documented in the
COMET-AR User's Manual (Ref. 5.2-1).

5-12 A Generic I_ Element lot COMET-AR

June22, 1994 5. Fini_ElementAna_dsProcedures

5.4.6. Current Limitations

Form FIE Force is a general purpose procedure. Limitationson the procedure usage are dictated by the

limitations of the ES processors. These limitationsare documented in the COMET-AR User's Manual (Ref.

5.2-1).

5.4.7. Status and Error Messages

Form_FE_Force will not print any status or error messages directly. NI messages will be produced by

the ES processors. The user should refer to the COMET-AR User's Manual (Ref. 5.2-1) for specific error

messages produced by these processors.

5.4.8. Examples and Usage Guidelines

The Form_FiE_Force procedure, called automatically fromwithin the SS_control procedure, calls a sec-
ond procedure, FORCE, which fOnTSa nodalforce vector given input element and nodal loads by executing

the ES processor. The SS_control procedure calls Form_FE_Force with the appropriate macrosyrnbols

substituted forthe arguments. The user need only ensure that the rnacrosymbolsdefined in procedure Inltlak

Ize (see Section 3.3) are visibleto the SS_control procedure. A listingof the Form FE Force procedure fol-
lows.

•procedure Form_FE_Force (step; load_set; idi; mesh)

•call FORCE (type = EXTERNAL ; --
idi = [Idi] ; --

input_force = [Idi],NODAL.SPEC_FORCE.[load_set].0.[mesh] ; --

output_force = [idi], NODAL.EXT_FORCE.[Ioad_set].0.[mesh] ; --
load_set = [load_set] ; --

load_factor = 1,0 ; --
mesh = [mesh])

,end

5.4.9. References

5.4-1 Stanley, G.M., Hurlbut, B., Levit, I., Stehlin, B., Loden, W., and Swenson, L., COMET-AR User's
Manual, LMSC Report #P032583, 1993.

AGenericInto ElementlotCOMET-AR 5-13

5. F.ile Element Ana/ym Pmmdums June 22, 1994

THIS PAGE INTENTIONALLY BLANK

5-14 A C_maric Imm'Im_ Bmmmt lot COMET-AR

June22, 1994 5. FiniteElementAr_s Pr(xxK_res

5,5- Finite Element Stiffness Matrix Formation -
Procedure Form FE Stiffness

i m

5.5.1. General Description

Procedure Form FE Stiffness calculates the element stiffnessrnatncesfor finite element substructures.

The procedure operates on a singlefin#e element substructureand thus is called once for each finite element

substructure in the system. The procedure is called automatical_ from within procedure SS_Control (see

Section 3.2) using rnacrosymbolsdefined inthe Initialize procedure (see Section 3.3).

5.5.2. Argument Summary

SS_control invokes procedure Form_FE_Stlffness with the COMET-AR ,call directive, employing the

arguments summarized in Table 5.2, which are deecdhed indetail subsequently.

Table 5.5. Procedure Fonn_FE. Stiffness Input Arguments

Argument

LDI

DelaunValue

None

DelicripUon

Logical device index

LOAD_SET None Load set number

MESH None Mesh number of model

STEP None Nonlinear load step number

5.5.3. Argument Definitions

In this subsection, the procedure arguments summarized in Table 5.2 are defined in detail. Note that
arguments are listed in alphabetical order.

5.5.3.1 LDI Argument

Logical Device Index. This argument isthe logical unitfor the database containing the model data for the

substructure being processed.

Argument syntax:

I LDI =/di J

where the integer/di must be set to an appropriate active library number. SS_control (see Section 3.2)

passes a macrosymbol, SS_IdI[I], throughthis argumentfor each substructure I. This macrosymbol is one of
the required macrosymbols discussed in Section 3.3. (Default value: None)

A GeeedcInterlaceElementlotCOMET-AR 5-15

PRECEDING PAGE BLANK NOT FILMF_.

5. Rn_ ElementAneJyms_res June22, 1994

5.5.3.2 LOAD_SET Argument

Load set number. This argument identifies the load set number for the substructure being processed.

Argument syntax:

LOAD_SET =/oad_set

where the integer/oad_set must be set to a valid load set number. SS_control (see Section 3.2) passes a

macrosymbol, SS_load_lmt[I], through this argument for each SUbstructure I. This macrosymbol is one of the

required macn)symbols discussed in Section 3.3. (Default value: None)

5.5.3.3 MESH Argument

Mesh Number. This argument identifies the number of the mesh to be processed within the library/di.

Argumentsyntax:

[MESH-mesh J

where the integer mesh must be set to a valid mesh number. SS_control (see Section 3.2) passes a

macrosymbol, SS_mesh[I], through this argument for each substructure I. This macrosymbol is one of the

required macrosymbols discussed in Section 3.3. (Default value: None)

5.5.3.4 STEP Argument

Nonlinear load step number. This argument identifies the load step number for the substructure being

processed.

Argument syntax:

l STEP -/oad_step J

where the integer/oad_.smp must be set to a valid load set number. SS_control (see Section 3.2) passes a

macrosymbol, SS_lltep[i], through this argument for each substructure I. This macrosymbol is one of the

required macrosymbols discussed in Section 3.3. (Default value: None)

5.5.4. Database Input/Output Summary

NI database input and output requirements tor this procedure are imposed by the subordinate processors

and procedures. These dataset requirements are documented in the appropriate sections of the COMET-AR

User's Manual (Ret. 5.2-1).

5.5.5. Subordinate Processors and Procedures

Form_R_Stiffness calls the utility procedure ES which executes the ES processor. The procedures and

processor are documented in the COMET-AR User's Manual (Ref. 5.2-1).

5-16 A GenedcInmdaceElementfor COMET-AR

June 22, 1904 5. Finim Element Analysis Procedures

5.5.6. Current Limitations

Fomrt_FE_SUffnen is a general purpose procedure. Limitationson the procedure usage are dictated by

the limitations of the ES processors. These limitations are documented in the COMET-AR User's Manual
(Ref. 5.2-1).

5.5.7. Status and Error Messages

Form_FE_StiffneN will not I_nt any status or error messages directly.NI messages will be produced by

the ES processors. The user should refer to the COMET-AR User's Manual (Ref. 5.2-1) for specific error

messages produced by these processors.

5.5.8. Examples and Usage Guidelines

•The Form_FE_Stlflness procedure, called automatically from within the SS_control procedure (see

Section 3.2), calls a second procedure, ES (Ref. 5.2-1), which calls the specific finite element processor to

compute the element stiffness matrices. The SS_control procedure calls Form FE Stiffness with the

appropriate macrosymbols substituted for the arguments. The user must ensure that the macrosymbols
defined in procedure Initialize (see Section 3.3) are visible to the SS_control procedure. A listing of the

Form_FIE_Stiffness procedure follows.

•procedure Form_FE_Stiffness (step; load_set; idi; mesh)

•call ES (function = 'FORM STIFFNESS/MATL' ; --

stiffness = MATL_STIFFNESS ; --

idi = [idi] ; --

load_set = [load_set] ; --

step = [step] ; --

mesh = [mesh])
*end

5.5.9. References

5.5-1 Stanley, G.M., Hurlbut, B., Levit, I., Stehlin, B., lock)n, W., and Swenson, L., COMET-AR User's
Manual, LMSC Report #P032583, 1993.

A Genetic Into Bement for COMET-AR 5-17

5. F-mite Elem_t AmdyJs Procedures June 22, 1994

THIS PAGE INTENTIONALLY BLANK

5-18 A GenIf_ Inledaol Element for COMET-AR

June 22, 1994 5. FinileElementAnalysisProcedures

5,6, Finite Element Stress Recovery - Procedure
Comp_FE_Stress

5.6.1. General Description

Procedure Comp_FE_Stress calculates the finite element stress resultants for each element in each

substructure. The procedure may be called directly or may be invoked through a call to the Post FE Stress

procedure (see Section 3.4).

5.6.2. Argument Summary

The procedure Comp_FE_stress may be invoked with the COMET-AR ,call directive employing the

arguments summarized in Table 5.2 (which are described in detail subsequently), or called through the proce-

dure Post_FE_.stress provided the default values for all of the arguments listed are acceptable. If any default

value requires modification, Comp_FE_Stress should be invoked directly so that the proper argument value

may be passed.

Table 5.6. Procedure Comp_FE_Strsss Input Arguments

Argument Default Value

<true>DELETE

1

LOCATION Ih'?D__PTS

MESH 0

STR_DIRECTION

Deqiorllltlon

Mark stress resultant object for
deletion from database

Location at which element stress

resultants are calculated

Mesh number of model

Stress direction

5.6.3. Argument Definitions

In this subsection, the procedure arguments summarized in Table 5.2 are defined in detail. Note that

arguments are listed in alphabetical order.

5.6.3.1 DELETE Argument

Delete Existing Data,set Flag. This argument flags existing stress data objects for deletion.

Argument syntax:

I DELETE = delete_flag J

where the integer delete_flag must be set to either <tcue> (if an existing stress object is to be deleted) or

<faZse> (if is an existing stress object is to remain) Section 3.3. (Default value: None)

A Gene_ Into Element lot COMET-AR 5-19

PRECEDING PAGE BLANK NOT FILMED

5. RnimElwnentAaalyasProomiums June22, 1994

5.6.3.2 LOCATION Argument

Stress Resultant Location. This argument identifies the location within each element at which the stress
resultants are calculated for each substructure.

Argumentsyntax:

[LOCATION =/oca_on [

where the _er string/ocat/on must be set to C_£ROZDS, NODES, or ZZqCEG._P'Z'S.(Default value:

zm'm_Pz's)

5.6.3.3 MESH Argument

Mesh Number. This argument identifiesthe number of the mesh to be processed.

Argumentsyntax:

1 MESH = mesh J

where the integer mesh must be set to a valid mesh number (Le., a mesh number which exists in the each of

the substructure libraries). (Default value:0)

5.6.3.4 STR_DIRECTION Argument

Stress Direction. This argument identifiesthe directioninwhich the stress resultants are to be computed.

Argumentsyntax:

[STR_DIRECT,ON. d/mctk)n J

where the d/reckon may be either character or integer and must be set to a valid stress direction as defined in

Section 7.2.6.24 of Ref. 5'_-1. (Default value: 10rGT.OBAL X)

5.6.4. Database Input/Output Summary

NI database input and output requirements are imposed by the ES processor. These requirements are
documented in detail in Re/. 52-1.

5.6.5. Subordinate Processors and Procedures

The Comp_FE_Stress procedure has two subordinate procedures: CSMget and STRESS. The proce-
dure CSMget accesses the CSM data object and the procedure STRESS calls the ES processor to calculate

the stress resultants. The user is referred to Ref. 5.2-1 for details on these procedures and processor.

5.6.6. Current Limitations

Limitations on the procedure usage are dictated by the limitationsof the ES processor and the CSMget
and STRESS procedures. The user is referred to Ref. 5.2-1 for details on these procedures and processor.

5-20 A _ InlmtaceElementlotCOMET-AR

June 22. 1994 5. Rnits Element Analysis ProceCJmS

5.6.7. Status and Error Messages

Comp FE_Stress does not print any error messages directly. All messages will be produced by the ES

processor or the CSMget and STRESS procedures. The user is referred to Ref. 5.2-1 for details on these
procedures and processor.

5.6.8. Examples and Usage Guidelines

The Comp_FE_StreN procedure may be invoked through a call to the Post FE Stress procedure or
through a direct call. The user need only ensure that the macrosymbois defined in the procedure Initialize

are visible to the Comp_FE_StreN procedure. A listingof the procedure follows.

*procedure Comp_FE_Stress (Location = INTEG_PTS; sir_direction = i; --

mesh = 0; Delete = <true>)

*do Sk = l,<Num ss>

*def/i Idi = 1

*open <idi> <SSLib_Name[<$k>]>

................................

Get Element Type Information

................................

"call CSMget (idi=<idi>; mesh=[mesh]; attrib=NET; --

macro=KS_NET)

*do Set = l, <ES_NET>

"call CSMget (idi=<idi>; mesh=[mesh] ; iet=<$et>; --

attrib=EltPro; macro=ES_PROC[<Set>])

"call CSMget (idi=<idi>; mesh=[mesh] ; iet=<Set>; --

attrib=EltTyp; macro=ES__fPE[<$et>])

*enddo

*def/i i = <SS_Load_Set[<Sk>]>

*def/i j = <SS_Con_Set[<$k>]>

Delete Existing files

*if <[Delete]> /then

Find Dataset <idi> E.STRESS.<i>.<j>.[mesh] /seq=iseq[l]

Find Dataset <Idi> E.STRAIN.<i>.<j>.[mesh] /seq=iseq[2]

Find Dataset <Idi> E.STRAIN_ENERGY.<i>.<j>.[mesh] /seq=iseq[3]

*do $i = 1,3

*if <iseq[<$1>]> /ne 0 > /then

"Delete <Idi> <iseq[<Sl>]>

*endif

*enddo

*endif

"call STRESS (STRESS = <idi>, E*.STRESS.<i>.<j>.[mesh] ; --

STRAIN = <idi>, E*.STRAIN.<i>.<j>.[mesh]; --

STRAIN_ENERGY = <Idi>, E*.STRAIN_ENERGY.<i>.<j>. [mesh] ; --

DISPLACEMENT = <Idi>, NODAL.DISPLACEMENT.<i>.<j>. [mesh] ; --

MESH = [mesh] ; --

LOCATION = [location]; DIRECTION = [sir_direction])

*enddo

*close

*end

5.6.9. References

5.6-1 Stanley, G.M., Hurlbut, B., Levit, I., Stehlin, B.0 Loden, W., and Swenson, L., COMET-AR User's
Manua/, LMSC Report #P032583, 1993.

A Generic Into Element Ikx COMET-AR 5-21

5. Rnim F.JementAnalysis Pmmdums June 22, 1994

THIS PAGE INTENTIONALLY BLANK

5-22 A Generic Irmdace Element for COMET.AR

June22, 1994 5. F,_te ElementAnatysisProcedures

5.7. Compute Smoothed Nodal Stresses- Procedure
Comp Nodal_Stress

5.7.1. General Description

Procedure Comp_NodaLStress calculates a set of weighted average nodal stress resultants for each

node in each substructure and creates a single NAT data object in the master model library which contains

the master model nodal stress resultants. The procedure may be called directly or may be invoked through a

call to the Post_FE Strefls procedure (see Section 3.4).

5.7.2. Argument Summary

There are currently no arguments to this procedure. It is assumed that the rnacrosymbois discussed in

Section 3.3 have been defined and exist as macrosymbols visible to the procedure.

5.7.3. Argument Definitions

See previous Section.

5.7.4. Database Input/Output Summary

All database input and output requirements are imposed by the NVST processor. These requirements are

documented in Ref. 5.2-1.

5.7.5. Subordinate Processors and Procedures

The Comp_Nodal_Stress procedure has only one subordinate processor, NVST. The user is referred to

Ref. 5.2-1 for details on this processor.

5.7.6. Current Limitations

Limitations on the procedure usage are dictated by the limitations of the NVST processor. The user is

referred to Ref. 5.2-1 for details on this processor.

5.7.7. Status and Error Messages

Comp_Nodal..Stress does not print any error messages directly. All messages will be produced by the

NVST processor. The user is referred to Ref. 5.2-1 for details on this processor.

A Genedcinto Elementfor COMET-AR 5-23

PRECEDING PAGE BLANK Nr_T tclw,_'_n,

5. Fm_ Ebment Ana_m Pnxadums June 22, 1994

5.7.8. Examples and Usage Guidelines

The Comp Nodal_Stress procedure may be invoked either through a call 1o the Post_FE_Stress pro-

¢edure or through a direct call. The user need only ensure that the macrosymbols defined in the procedure

Initialize are visible to the Comp_NodaLStress Procedure. A listing of the procedure follows.

*procedure Comp_Nodal_Stress

*open <MM_idi> <MM Name>

*do

*enddo

*close

*end

$i = l,<Num_ss>

*open <SS_idi[<$i>]> <SS_Lib_Name[<$i>]>

*if < <$i> /eq I > /then

*def/i iupdat = 0

*else

*def/i

*endif

run NVST

iupdat = 1

SET /lib : <SS_idi[<$i>]>

SET /load : <SS Load_Set[<$i>]> /con

stop

/olib = <MM_idi> /update : <iupdat>

= <SS_Con_Set[<$i>]>

5.7.9. References

5.7-1 Stanley, G.M., Hurlbut, B., Levit, I., Stehlin, B., Loden, W., and Swenson, L., COMET-AR User's

Manua/, LMSC Report #P032583, 1993.

5-24 A Generic Intmrfa_ Element for COMET-AR

June 22, 1994 6. Master Mode_Analysis Procedures

11 Master Model Analysis Procedures

6.1. Overview

This Chapter describes new COMET-AR command language procedures which control the generation

and analysis of the Master Model. The Master Model Processor, MSTR, takes as input the substructure and

interface element definitions (Le., node locations, connectivities, loads, boundary conditions) and then

renumbers all of the input nodes (including pseudo-nodes and alpha-nodes) sequentially, renumbers the
elements, rewrites the element connec_les, and copies all the data required for the solution into a single

library file. The resulting master model therefore contains both finite elements (possibly several different

types) and interface elements. The element stiffness matrices may then be assembled using an available

assembly processor (e.g., processorASM) and the resultingglobal system of equations may be solved using
an available solver (e.g., processor PVSNP). A section is dedicated to each of the master model analysis

procedures summarized in Table 6.1.

Table 6.1. Outline of Chapter 6: Master Model Analysis Procedures

Section Procedure
i

Merge_.SS2

Assembles the master model stiffness matrix
3 Assemble_Master and load vector

4 SolveMaster Solves the global system of equations

Function

Template for user-w_len procedure which
generates the master model

A Gened¢ tntsdace Element lot COMET-AR 6-1

6. Mas_ Model Analysis Procedures June 22. 1994

THIS PAGE INTENTIONALLY BLANK

6-2 A Gen_c Inlerlace Eklment lot COMET-AR

June22, 1994 6. Muter ModelAnaly_sPmoedures

6.2. Master Model Generation - Procedure Merge_SS

6.2.1. General Description

The finite element substructures and the interface elements are merged into a single master model

through the use of the Merge._SS procedure which calls the MSTR processor (see Section 8.2 for details on

this processor) and which is called automatically by the SS_control procedure (see Section 3.2). The proce-
(lure Merge_SS may either he used as is (in which case all of the defined substructures are merged with all

of the interface elements) or it may be used as a template (so that only selected substructures are merged).

Table 6.2 is a listing of the Merge_SS procedure template.

Table 6.2. Template for User-Defined Procedure Merge_SS

,procedure Merge_SS
• Merge User-specified substructures into a single library

Run MSTR

• Define Substructures that will be merged
DEFINE SUBSTRUCTURES

*do $j = 1, <Num_SS>
• Finite Element Substructures

SUBstructure <SS_List[<$j>]>/re

Library
Mesh

Load_set
Constraint_case

Load_step
*enddo

= <SS_ldi[<$i>]>
= <SS_mesh[<Sj>]>
= <SS._load_set[<$j>]>
= <SS_con_selI<$j>]>
= <SS_stepl<$j>]>

• Interface Element Substructure

SUBstructure <<SS_Ust[<$j>]>+I> [B

Library = <El_k:li>
Mesh = <El_mesh>

Loadset = <El_bad_set>
Constraint_case = <El_con_set>

Load_step = <Elstep>

END_DEFINE
• Perlorm the Merge operation

MERGE <SS_List[1 :<Num_SS>]>,<<Num_SS>+I•
File

Ubrary
Mesh

Load_set

Constraint_case
Load_step

END_MERGE
STOP

,end

= <MM_name>

= <MM_ldi>
= <MM_mesh>

= <MM_load_set>

= <MM_con_set>
= <MM_step>

• SS library numbers
• SS mesh numbers

• SS load set numbers
• SS constraint case numbers

• SS Load step numbers

. Interface Element library
• Interface Element mesh

• Interface Element load set

• Interface Elem. constraint case

. Interface Element Load step

Master model library file name

Master model library number
Master model mesh

Master model load set

Master model constraint case

Master model Load step

AGenericInterlaceElementlotCOMET-AR 6-3

PRECEDING PAGE BLANK NOT F|U_i_

6. Mum'Modoikadym Prooedums June22,1994

6.2.2. Argument Summary

It is recommended that required input parameters be defined using the macrosymbols defined in

procedure Initialize (see Section 3.3) rather than through new procedure arguments. Users may choose to

utilize new procedure arguments however, the procedure SS_control will then have to be customized by the
user.

6.2.3. Argument Definitions

See previous Section.

6.2.4. Database Input/Output Summary

All database input and output requirements are imposed by the MSTR processor. These requirements
are documented in detail in Chapter 8.

6.2.5. Subordinate Processors and Procedures

The Merge_SS procedure has only one subordinate processor, MSTR. While there are also no
subordinate procedures in the template provided, the user may find it useful to define subordinate
procedures, especially for complex models.

6.2.6. Current Limitations

Merge_SS is a user-written procedure. Limitationson the procedure usage are dictated by the limitations
of the MSTR processor. These limitationsare documented in detail in Chapter 8. Urr_tations on the use of

interface elements in general are documented in Section I _5.

6.2.7. Status and Error Messages

Merge_SS does not usually print any statusor error messages directly (althoughthe user may choose to
include such messages). Most messages will be produced by the MSTR processor; these error messages

are documented in Chapter 8.

64 A _ lllt_acm Element lot COMET-AR

June 22. 1994 6. lubmmrModel Analysis Procedures

6.2.8. Examples and Usage Guidelines

The Merge_SS procedure template shown in Table 6.2 has been compiled into the procedure library,

SAR_EIPRC/proclib.gal. If all existing substructures are to be merged into a single master model, no user
action is required beyond the definition of the Merge_SS_Prc macrosymbol (see Section 3.3).

6.2.8.1 Example 1: Merge all existing substructures into • single model.

The following procedure merges all existing substructures, including interlace elements, into a single

master model. All librariesassociated withthe substructures and the interface elements must be opened prior

to calling this procedure. The user should refer to Chapter 8 for details of processor MSTR input.

=procedure Merge SS

Merge User-specified substructures into a single library

Run MSTR

• Define Substructures that will be merged

DEFINE SUBSTRUCTURES

*do $j = 1, <Num_SS>
. Finite Element Substructures

SUBstructure <SS_List [<$j>]> /fe

Library = <SS_idi [<$j>] >

Mesh = <SS_mesh [<$ j>]>

Load_set = <SS_load_set [<$j>] > .

Constraint_case = <SS con set[<$j>]>

Load_step = <SS_step [<$j>] >

=enddo

Interface Element Substructure

SUBstructure <<SS_List [<$j>] >+1> /ie

Library = <EI_ldi>

Mesh = <EI_mesh>

Load_set = <EI_load_set>

Constraint case = <EI_con set>

Load_step = <EI_step>

END_DEFINE

Perform the Merge operation

MERGE <SS_List [1 :<Num_SS>] >, <<Num_SS>+I>

File = <)_q_name >

Library = <I_4 idi>

Mesh = <l_4_mes h>

Load_set = <MM_load_set>

Constraint_case = <MM_con_set>

Load_step = <MM_step>

END_MERGE

STOP

*end

• SS library numbers

. SS mesh numbers

SS load set numbers

SS constraint case numbers

SS load step numbers

Interface Element library

Interface Element mesh

Interface Element load set

Interface Element constraint case

Interface Element load step

MERGE ALL SUBSTRUCTURES

Master model library file name

Master model library number

Master model mesh

Master model load set

Master model constraint case

Master model load step

A GenericlntmtaoeEiementlorCOMET-AR &5

6. Mm_r Mod_ Analym Promdures June 22, 1994

6.2.8.2 Example 2: Merge only three selected substructures into • single model.

The following procedure merges substructures 1 and 3 and the existing interface elements into a single

master model. NI libraries associated with the substructures and the interface elements must be opened prior

to calling this procedure. The user should refer to Chapter 8 for details on processor MSTR input.

sprocedure Merge_SS

• Merge User-specified substructures into a s_ngle library

Run MSTR

• Define Substructures that will be merged

DEFINE SUBSTRUCTURES

• Finite Element Substructures

SUBstructure 1 /fe

Library = 1

Mesh = 0

Load_set = 1

Constraint_case = 1

Load_step = 0

SUBstructure 3 /fe

Library = 4

Mesh = 0

Load_set = 2

Constraint_case = 2

Load_step = 0

• Interface Element Substructure

SUBstructure 4 /ie

Library = 8

Mesh = 0

Load_set = 1

Constraint_case = 1

Load_step = 0

• Perform the Merge operation

MERGE 1,3,4

File = 'master. dbc '

Library = 3

Mesh = 0

Load_set = 1

Constraint case = 1

Load_step = 0

END_MERGE

STOP

"end

• SS 1 library number

• SS 1 mesh number

• SS 1 load set number

• SS 1 constraint case number

• SS 1 load step number

• SS 3 library number

• SS 3 mesh number

• SS 3 load set number

• SS 3 constraint case number

• SS 3 load step number

Interface Element library

Interface Element mesh

Interface Element load set

• Interface Element constraint case

Interface Element load step

Master model library file name

Master model library number

Master model mesh

Master model load set

Master model constraint case

Master model Load step

6.2.9. References

None.

6-6 A Generic Intm'f_e Element lot COMET-AR

June22.1994 6. MastsrModelAnalysisProcedures

6.3. Master Model Assembly - Procedure
Assemble Master

6.3.1. General Description

The assembly of the global stiffnessmatrix and load vector are normally carried out within the solution

procedure (e.g., L..STATIC_I). Due to the introductionof the interface elements, this solution procedure can
no longer be used and the functions performed within it have been placed within different, individual

procedures. Some of these new procedures have already been discussed (e.g., Defn FE Freedoms). The

new procedure for performing system matrix and vector assernb_y is discussed in this Section.

Assemble_Master is called automatically by SS_controi (see Section 3.2) using macrosymbols defined in

the Initialize procedure (see Section 3.3).

6.3.2. Argument Summary

SS_control invokes procedure Assembie_Master with the COMET-AR .call directive, employing the

arguments summarized in Table 6.3, which are described in detail subsequently.

Argument

ASM_STIFFNESS

Table 6.3. Procedure Assemble_Master Input Arguments

DefaultValue

STRUCTURE. MATL_STIFFNESS

I)escription

Assembled matrix data object

CONSTRAINT_SET 1 Constraint set number

ELT_STIFFNESS _, .HATL_STIFFNESS Element matrix data objects

LDI_C 1 Computational database

LDI_E 1 Element matrix database

LDI_S 1 System matrix database

LOAD_FACTOR 1. o Load factor

LOAD_SET 1 Load set number

MESH 0 Mesh number

RHS NODAL. EXT_FORCE Applied force data object

SOLN NODAL.DISPLACEMENT Final solution data object

SPEC DISP ,. SPEC DISP Specified displacement data object

STEP 0 Load step number

A GenericInWda¢leElementlotC.,OMET-AR 6-7

6. Mm¢_ModelAnalymProcedures June22, 1994

6.3.3. Argument Definitions

In this subsection, the procedure arguments summarized in Table 6.3 are defined in more detail. Note

that arguments are listed in alphabetical order.

6.3.3.1 ASM_STIFFNESS Argument

Assembled Stiffness Matrix data ob_)ct name. This argument specifies the first two words of the name of

the output, assent4ed global stiffnessmatrix data object.

Argument syntax:

I ASM_STIFFNESS - global_stiffness_name

where global_stiffness_name is a character stringwhich must be a valid data object name. The SS._control

procedure (see Section 3.2) allows this argument to default. (Default value: STROC'I_R£. HA'__STIF_fESS)

6.3.3.2 CONSTRAINT_SET Argument

Constraint set number. This argument identifies the constraint set nunt)er for the merged, master model.

Argument syntax:

CONSTRAINTSET = constraint_set

where the integer constra/nt_set must be a valid constraint set number. The SS_control procedure (see

Section 3.2) calls Assemble_Master using the MM_con_set macrosymbol defined in procedure Initialize

(see Section 3.3). (Default value: z)

6.3.3.3 ELT_STIFFNESS Argument

Element Stiffness Matrix data object name. This argument specifies the first two words of the name of the

element stiffnessmatrices. If more than one element type is used during an analysis (with interface elements,

there is always more than one element type in the analysis), it is recommended that the default value be
used.

Argument syntax:

ELT_STIFFNESS = e__st/ffness_ name

where e__.stiffness_narne is a character string which must be a valid data object name. The SS_control

procedure (see Section 3.2) allows this argument to default. (Default value:E* .HATL_STZFF%TESS)

6-8 AGenericInWda_ElementforCOMET-AR

June22, 1fl94 6. MasterModelAnalysisProcedures

6.3.3.4 LDI_C Argument

Computational database logical device index. This argument is the logical device index, or library

number, for the database containing the model data (e.g., loads, nodalordering, etc.) for the master model.

Argument syntax:

J LDI_C= Idi

where the integer/di must be set to the appropriate library number. The SS_control procedure (see Section

32) calls Assemble_Master using the MM_kll macrosymbol defined in procedure Initialize (see Section

3.3). (Default value: 1)

6.3.3.5 LDI_E Argument

Element database logical device index. This argument is the logical device index, or library number, for

the database containing the element matricesfor the master model.

Argument syntax:

! LDI_E =/d/ I
where the integer/di must be set to the appropriate library number. The SS..control procedure (see Section
3.2) calls Assemble_Master using the MM_kll macrosymbol defined in procedure Initialize (see Section

3.3). (Default value: 1)

6.3.3.6 LDI_S Argument

System database logical device index. This argument is the logical device index, or library number, for

the database containing the system global stiffness matrix forthe master model.

Argument syntax:

where the integer/di must be set to the appropriate library number. The SS_comrol procedure (see Section

3.2) calls Assemble_Master using the MMkll macrosymbol defined in procedure Initialize (see Section

3.3). (Default value: 1)

6.3.3.7 LOAD_FACTOR Argument

Load factor. This argument is the load factor for the master model analysis.

Argument syntax:

l LOAD_FACTOR=factor J

where factor is a floating point number. The SS_control procedure (see Section 3.2) allows this argument to

default. (Default value: 1.0)

A GenericInlmtaoeElementlotGOMET-AR 6-9

6, Mum'ModetAnalymProcedures June22.1994

6.3.3.8 LOAD_SET Argument

Load set number. This argument identifies the load set number for the master model.

Argument syntax:

l LOAD_SET =/oad_set J

where the integer/oad_set must be a valid load set number (i.e., _ must exist in the/d/_.c data library). The
SS_control procedure (see Section 3.2) calls Auemble_Muter using the MM_load_set macrosymbol

defined in procedure Initialize (see Section 3.3). (Default value: z)

6.3.3.9 MESH Argument

Mesh identificationnumber. This argument identifiesthe mesh to be processed for the master model.

Argument syntax:

MESH= mesh J

where the integer mesh must be set to a valid mesh number. The SS_control procedure (see Section 3.2)

calls Assemble_Master usingthe MM_mesh macrosymboldefined in procedure Initialize (see Section 3.3).
(Default value: 0)

6.3.3.10 RHS Argument

Right-Hand Side vector data object name. This argument specifies the first two words of the name of the

output, assembled global right-hand side vector data object.

Argument syntax:

J RHS = rhs object_name I

where _s_object_name is a character stdng and must be a valid data object name. The SS_control
procedure (see Section 3.2) allows this argument to default. (Default value: NODAL._Z'_F'ORCE)

6.3.3.11 SOLN Argument

Solution vector data object name. This argument specifies the first two words of the name of the global
solution vector data object.

Argument syntax:

J SOLN = so/n_object_name J

where so/n_object_name is a character string and must be a valid data object name. The SS_contml
procedure (see Section 3.2) allows this argument to default. (Default value:NODAL. DTSPZ_Cm_n_')

6-10 A Generic Interface Element for COMET-AR

June 22, 1994 6. Masmr Model Analy_$ Procedures

6.3.3.12 SPEC_DISP Argument

Specified Displacement data object name. This argument specifiesthe first two words of the name of the

global specified displacement data object.

/Vgument s_tax:

I SPEC-DlsP=spec-disp-°bject-name [

where spec_disp_object_name is a character stdng and must be set to a valid data object name. The

SS_¢ontrol procedure (see Section 32) allowsthis argument to default. (Default value:*. SP_C_DZSP)

6.3.3.13 STEP Argument

Load step identification number. This argument identifies the load step (for nonlinear analysis) to be

processed for the master model.

Argument syntax:

where the integer step must be set to the appropriate load step number. The SS_control procedure (see

Section 3.2) calls Assemble_Master usingthe MM_step macrosymbol defined in procedure Initialize (see

Section 3.3). (Default value: o)

6.3.4. Database Input/Output Summary

NI database input and output requirementsforthis procedure are imposed by the ASIA processor. These
dataset requirements are documented in detail in the COMET-AR User's Manual (Ref. 6.3-1).

6.3.5. Subordinate Processors and Procedures

Assemble_Master has only one subordinate processor, ASM, and no subordinate procedures. At

present, ASM is the onJyassembler recognized.

6.3.6. Current Limitations

Limitations on the procedure usage are dictated by the limitations of the ASM processor. These
limitations are documented in the COMET-AR User's Manual (Ret. 6.3-I). Limitations on the analysis in

general are documented in Section I _5.

6.3.7. Status and Error Messages

Assemble_Master will not print any status or error messages directly.All messages will be produced by

the ASM processor. The user should refer to the COMET-AR User's Manual (Ref. 6.3-1) for specific error

messages produced by this processor.

A Generic Interlaoe Bement lot _ET-AR 6-11

6. MuW Mod_ Analym Pmosdures June 22, 1994

6.3.8. Examples and Usage Guidelines

The Assemble_Master procedure is called automatically by the SS_control procedure using the

macrosymbois defined by the user through the InlUalize procedure. A listingof Assemble_Master follows.

•procedure Assemble_Master (--

idi_c = 1 ; --

idi_e = 1 ; --

idi_s = i ; --

rhs = NODAL. EXT_FORCE ; --

soln = NODAL. DISPLACI_4ENT ; --

constraint_set = 1 ; --

load_set = 1 ; --

load_factor = 1.0 ; --

elt_stiffness = E,.MATL_STIFFNESS ; --

asm_stiffness = STRUCTURE.MATL_STIFFNESS ; --

spec_disp = ,.SPEC_DISP ; --
mesh = 0 ; --

step = 0)

• Assemble Element Stiffness Matrix into System Matrix

run ASM

MODEL [idi_c] CSM.SUMMARY...[mesh]

INCLUDE [idi_e],[elt_stiffness] DEFINITION = [idi_c]

INCLUDE [Idi_c] NODAL.DOF..[constraint_set].[mesh]

OUTPUT [idi_s],[asm_stiffness] FORMAT=Transpose

SHOW/I,O

ASSEMBLE

STOP

• Check for Spec. Displacement and Right-hand Side Data Objects

•find [idi_c],[spec_disp].[load_set]..[mesh] /seq=ids_AMU

•find [idi_c],[rhs].[load_set]..[mesh] /seq=ids_RHS

• Assemble Right-hand Side Vector
run ASM

MODEL [ldi_c] CSM._Y...[mesh]

INCLUDE [idi_c] NODAL.DOF..[constraint_set].[mesh]

• if < <ids_AMU> /gt 0 > /then

INCLUDE [Idi_e],[elt_stiffness] DEFINITION = [idi_c]

INCLUDE [idi_c],[spec_disp].[ioad_set]..[mesh] CONTENTS = DISP_N
,endif

• if < <ids_RHS> /gt 0 > /then

INCLUDE [idi_c],[rhs].[load_set]..[mesh] CONTENTS = FORC_N
,endif

OUTPUT [idi_s] SYSTEM.VECTOR.[load_set]..[mesh] FORMAT = DOFVEC

ASSEMBLE/VECTOR

STOP

,end

6.3.9. References

6.3-1 Stanley, G.M., Hurlbut, B., Levit, I., Stehlin, B., Loden, W., and Swenson, L., COMET-AR User's
Manual, LMSC Report#P032583, 1993.

6-12 A Generic Intmtace Element Ior COMET-AR

June22,1994 6. MasmrModelAnalysisProcedures

6.4. Master Model Solution - Procedure Solve Master
m

6.4.1. General Description

In COMET-AR, the solution of the global system of equations is normally carried out within the solution

procedure (e.g., L_STATIC_I). Due to the introduction of the interface elements, this usual solution

procedurecan no linger be used and the functions pedormed within it have been placed within different,

individual procedures. Some of these additional procedures have already been discussed (e.g.,

Defn_.FE_Freedoms). The new procedure for performingthe solution of the equation system is discussed in
this Section.

Procedure SolveMaster obtains the solution to the global system of equations. Since constrained

(either through multi-point or single-pointconstraints) degrees-of-freedom are not assembled, a call to COP,

the constraint processor (Ref. 6.3-1), is required. This call to processor COP expands the solved system to

constraints thereby providing the user with results data objects which may be viewed and post-
processed. SS_control (see Section 3.2) automatically calls Solve_Master using macrosymbols defined in

procedure Initialize (see Section 3.3).

6.4.2. Argument Summary

SS_control invokes procedure Solve_Master with the COMET-AR ,call directive, employing the
arguments summarized in Table 6.3, which are described in detail subsequently.

Table 6.4. Procedure Solve_Master Input Arguments

Argument

CONSTRAINT_SET

LDLC Z

LDI_S 1

LOAD._FACTOR 1. o

Default Value

1

Description

Constraint set number

Computational database

System matrix database

Load factor

LOAD_SET 1 Load set number

MESH 0 Mesh number

SOLN NODAL.DZSPI._C_,_:h"Z'

SPEC_DISP *. SPEC_DZSP

STEP 0

Final sobtion data object

Specified displacement data object

Load step number

A GenericIntmtlaceElementlotCOMET-AR 6-13

6. Iku.w ModslAnalymPromdums June22. 1994

6.4.3. Argument Definitions

In this subsection, the procedure arguments summarized in Table 6.3 are defined in more detail. Note

that arguments are listed in alphabetical order.

6.4.3.1 CONSTRAINTSET Argument

Constraint set number. This argument identifiesthe constrai'ntset number for the global, merged, master

model.

Argument syntax:

I CONSTRAINT_SET = constraint_set I

where the integer _nt_set must be a valid constraint set number. The SS_control procedure (see

Section 3.2) calls Solve_Master using the MM_con_ut macrosymbol defined in procedure Initialize (see

Section 3.3). (Default value: 1)

6.4.3.2 LDI_C Argument

Computational database logical device index. This argument is the logical device index, or library

number, for the database containingthe model data (e.g., loads, nodal ordering, etc.) for the master model.

Argument syntax:

LDI_C=/di

where the integer/d/must be set to the appropriate library number. The SS control procedure (see Section

3.?.) calls Solve_Master using the MM_Idl macrosymbol defined in procedure Initialize (see Section 3.3).

(Default value: z)

6.4.3.3 LDI_S Argument

System database logical device index. This argument is the logical device index, or library number, for
the database containing the system global stiffness matrix for the master model.

Argument syntax:

I LDI...S=/di I

where the integer/di must be set to the appropriate library number. The SS_control procedure (see Section

3.2) calls Solve_Master using the MM_Idl macrosymbol defined in procedure Initialize (see Section 3.3).

(Default value: 1)

6-14 A Generic Imeda_ Bement lot COMET-AR

June 22, 1904 6. Master Model Analy_$ Prooedures

6.4.3.4 LOAD FACTOR Argument

Load factor. This argument is the load factor (for nonlinear analysis) for the master model analysis.

Argument syntax: ,.

LOAD_FACTOR = factor

where factor is a floating point number. The SS_contml procedure (see Section 3.2) allows this argument to
default. (Default value: z. o)

6.4.3.5 LOAD_SET Argument

Load set number. This argument identifiesthe load set number for the master model.

Argument syntax:

LOAD_SET =/oad_set I

where the integer/oad_set must be a valid load set number (i.e., it must exist in the/d/__c data library). The

SS control procedure (see Section 3.2) calls Solve_Master using the MM_load_set macrosyn¢_l defined
in procedure Initialize (see Section 3.3). (Default value: 1)

6.4.3.6 MESH Argument

Mesh identificationnumber. This argument identifiesthe mesh to be processed for the master model.

Argument syntax:

t MESH=mesh J

where the integer mesh must be set to a valid mesh number. The SS_control procedure (see Section 3.2)

calls Solve_Master using the MM_mesh macrosymbol defined in procedure Initlalbm (see Section 3.3).
(Default value: 0)

6.4.3.7 SOLN Argument

Solution vector data object name. This argument specifies the first two words of the name of the global
solutionvector data object.

Argument syntax:

SOLN = soln_object_name J

where soln_object_name is a character string and must be set to a valid data object name. The SS_oontrol

procedure (see Section 3.2) allows this argumentto default. (De'_dt value:NODAL. DTSPZ_CE:_)

A Germ_ Into Bement for COMET-AR 6-15

s. Mmm¢Mod_AnalymProcedures June22, 1994

6.4.3.8 SPEC_DISP Argument

Specified Displacement data object name. This argument specifiesthe first two words of the name of the

global specified displacement data object.

Argument syntax:

I sPEC-DlSP=spec-disp-Object-narne I

where spec_disp_object_name is a character stdng and must be set to a valid data object name. The

SS_control procedure (see Section 3.2) allows this argument to default. (Default value:,. SPEC_DZSP)

6.4.3.9 STEP Argument

Load step identification number. This argument identifies the load step (for nonlinear analysis) to be

processed for the master model.

Argument syntax:

where the integer step must be set to the appropriate load step number. The SS_control procedure (see
Section 3.2) calls Solve_Master using the MM_step macrosymbol defined in procedure Initialize (see

Section 3.3). (Default value: 0)

6.4.4. Database Input/Output Summary

All database input and output requirements for this procedure are imposed by the PVSNP and COP

processors. These dataset requirements are documented in detail in the COMET-AR User's Manual (Ret.

6.3-1).

6.4.5. Subordinate Processors and Procedures

Solve_Master has two subordinate processors,PVSNP and COP, and calls no procedures. The current
interface element requires a solver capable of solving a non-positive-definitesystem of equations. The only

solver so capable is, currently, PVSNP. ProcessorCOP is executed to expand the solution system vector into

a full nodal vector table so that the results may be post-processed.

6.4.6. Current Limitations

Limitations on the procedure usage are dictated by the limitationsof the PVSNP and COP processors.
These limitations are documented in the COMET-AR User's Manual (Ref. 6.3-1). Limitationson the analysis

in general are documented in Section 1.5.

6.4.7. Status and Error Messages

Solve_Master does not print any status or error messages directly. All messages are produced by the

PVSNP or COP processors. The user should refer to the COMET-AR User's Manual (Ref. 6.3-1) for specific
error messages produced by these processors.

6-16 A _ InWdaoo Element for COMET-AR

June 22. 1904 6. Masmr Model Analysis Procedures

6.4.8. Examples and Usage Guidelines

The SolveMaster procedure is called automatically by the SS_control procedure using the appropriate

macrosymbois as defined by the user. A listingof the procedure follows.

•procedure Solve_Master (--

idi_c = 1 ; --

idi_s = 1 ; --

spec_disp = ,.SPEC_DISP ; --

soln = NODAL.DISPLACEMENT ; --

constraint_set = I ; --

load_set = I ; --

load_factor = 1 ; --

mesh = 0 ; --

step = 0)

Check for Spec. Displacement and Right-hand Side Data Objects

•find [ldi_s], [spec_disp] . [load_set] .. [mesh] /seq=ids_AMU

•find [ldi_s], SYSTEM.VECTOR. [load_set] .0. [mesh] /seq=ids_RHS

•if <<ids_RHS> /le 0> /then

•remark ,,, No right-hand side vector in library [idi_s]

,stop

,endif

Solve the system of equations with processor pvsnp

run PVSNP

SET LDiC = [Idi_c]

SET LdiS = [idi s]

SET MESH = [mesh]

SET STEP = [step]

SET IJUMP = 9

FACTOR

STOP

Reinstate Deleted And Specified Freedoms

run COP

MODEL [ldi_c] CSM.SUMMARY... [mesh]

• if < <ids_AMU> /gt 0 > /then

•def/a am_.ph='VALUES=[ldi_s], [spec_disp] [load_factor] '

,else

•def/a am_ph=' '

,endif

EXPAND/DOFVEC

,end

INPUT = [idi_s], SYSTEM. VECTOR. [load_set] .. [mesh] --

OUTPUT= [idi_s] , [soln] . [load_set] . [constraint_set] <am_ph> --

DOFDAT=[Idi_c] [constraint_set] [mesh] <am_phrase>

STOP

6.4.9. References

6.4-1 Stanley, G.M., Hurlbut, B., Levit, I., Stenlin, B., Loden, W., and Swenson, L., COMET-AR User's
Manual, LMSC Report #P032583, 1993.

A Generic llr,lmla_ Element lot COMET-AR 6-17

6. Masm'Mo_ Analysis Pmm_m$ June 22, 1994

THIS PAGE INTENTIONALLY BLANK

6-18 A _mric Imsdam Eknent lot COMET-AR

June 22. 1994 IV. Proaessors

Part IV,

PROCESSORS

A 6eno_ Into Eknant lot COMET-AR IV-1

PAECEDING PAGE BLANK NOT FILMED

IV. F_ Juno 22, 19_

THIS PAGE INTENTIONALLY BLANK

IV-2 A Gonorio Inlm"ImmEkenere lot OOMET-AR

June22, 1994 7. GenericInterfaceElementProcessor

0 Interface Element Processors

7.1. Overview

In this Chapter, the Generic Interface Element Processor as well as a specific interface element proces-
sor are described. The Generic Interface Element Processor is much like the Generic Element Processor, or

GEP (Ref. 7.2-1), in that it is a standard processor template (also called a "shell")from which many individual

interface element processors may be developed. All of the individualprocessors share a common user inter-

race and a common database interfacethrough the Generic Interface Element Processor. This common shell

is named the El processor; individualelement processorsare named El. processors (e.g., El1, El2). Each El

processor performs all the functions associated with elements of a particular type (e.g., defines elements,
forms stiffness).

The Chapter is organized as listedin Table 7.1

Table 7.1. Outline of Chapter 7: Interface Element Processors

Sectlon Processor Function i

2 El Generic Interface Element Processor

3 El1 HybridVariational Interface Element Processor

AGenericInto ElementfixCOMET-AR

P'P,ECEDING PAGE BLANK NOT FILMED

7-1

7. Generic Immla_ Element Proomm_ June 22, 1994

THIS PAGE INTENTIONALLY BLANK

7-2 A Generic Intsdace Element k:lr COMET-AR

June 22, 1994 7. Generic In.trace Element Processor

7.2. Processor El (Generic Interface Element Processor)

7.2.1. General Description

The generic interface element processor, or El (for Element, Interface) provides a standard template

which may be used to implement different interface elements, all of which may then coexist within COMET-AR

as independent software modules. Processor El provides a common user interface and a common database
interface for each of these potentially independent modules. This processor was modeled after the Generic

Bement Processor for structural elements (Ref. 7.2-1), ES, which forms the foundation for all finite element

implementation within COMET-AR. Indeed, the El processor looks very much like the ES processor, using

many of the same commands and similar underlying software. The El processor is however, significantlydif-

ferent from the ES processor; maw new data objects are required to define the interface element and the
user input requiredfor the interface element definitionis radicallydifferent than that requiredfor finite element

definition.

This Section describes the interface element reference frames, the standard user interface, and the data-

base interface employed by the El processor and therefore, by all processors which use the El processor

template.

7.2.2. Interface Element Reference Frames

The El processor shell creates the transformation matrices required to define two reference frames - the

edge frame (attached to the substructure edges) and the interface frame (attached to pseudo-nodes) - as
shown in Figure 7.1. The edge frame is the computationalframe for the alpha-nodes and the interface frame

is the computational frame for the pseudo-nodes. These frames need not be coincident with any of the finite
element node computational frames therefore the interface element matrices must be transformed prior to

assembly in the global system of equations.

Ym _ _ _., Finite element Nodes

\

Ys

l m: material framez__ c: nodal computational frame

e: finite element frame

g: global frame
s: interlace frame

d: edge frame

Figure 7.1. Interlace Element Reference Frames

A Generic Inledace Element lot COMET-AR 7-3

PRECEDING PAGE BLANK NOT FILMED

7. Genedc IntBdace Element Prooeuor June 22. 1994

Creation of the transformation matrices for these reference frames is a two step process. First, the edge

and interface frames are defined by creating tangent and normal vectors alongthe edge and interface respec-

tively; these vectors are then saved in the database. This firststep is completed during the interface element
definition. Second, the vectors are read from the database and transformation matrices, which transform

edge and interface to a global frame, are formed based on the vectors. This second step is accomplished dur-

ing the formation of the interface element stiffness matrix.

The procedure employed by the shell for defining the edge and interface frames (denoted by the sub-
scripts "d"and "s"respectively) is as follows:

1. Calculate the average nodal normals, nd, for the finite element nodes along the interface for all substruc-

tures. Note that in general, each finite element node may be connected to more than one finite element

along the interlace. A normal is defined at each node for each finite element inthe global frame. The aver-

age is calculated based on these elemental normals. Only the normais from elements along an interface

are considered at a given node.

2. Using a piecewise ,near interpolation between the average nodal normals along the finest (discretized
with the most nodes) substructure, calculate a normal, ns, for each pseudo-node.

3. Calculate tangents, r d (for finite element nodes) and t's (for pseudo-nodes), by differentiating along the
interface element path. These are interimvalues which are discarded once the frames are created.

4. Calculate the transverse tangents b'd = nd x t'd and b's= ns x t's. Normalize b' in both frames to recover

I_ and bs.

5. Calculate td = bd x nd and ts = bs x ns.

6. Repeat steps 3-5 for each substructure,performing only edge frame calculations.

7. Locate the image of each pseudo-node along the edge of each substructure and linearly interpolate a

normal and two tangents for each image in each edge frame (i.e., form tdp , bp , n_).

needed. The shell creates three sets transformationmatrices: Tsg, Tdg, and l_dg

Once the various normais and tangents are created and saved, transformation matrices are formed as

which are defined by

I':l I':l kl
Tsg-" Ib_l; Tdg-" IbTI; "l'_dg= ibPT I. (7.2-1)

k°.J L° J L":'J
These matrices are then passed down throughthe El processorfo the kernel along with the oomputatiorml-to-
global transformations, found in the N'l'r data object NODAL.TI_NSFORI_TION...m_h, for the finite element

nodes of each substructure. The interlace element developer is then responsible for applying the

transformations as necessary to the matrix generated by the kernel so that the pseudo-node and alpha-node

degrees-of-freedom (if any) are in the interface and edge frames respectively.

7.2.3. Automatic Drilling Degree-of-Freedom-Suppression

In spacir¢ applications, it may be necessary to constrain the so-called drilling degree-of-freedom. The

suppression of this degree-of-freedom along the interface is only required when the drilling freedom is sup-
pressed in all connected substructures and when the geometry of the structureis such that there is a degree-

of-freedom in the connected structure for which there is no stiffness. For example, if a curved panel with a

7-4 A Genedc Inlmlace Element for COMET-AR

June 22, 1994 7. Generic Inmrlace Element Processor

central hole is modeled with an ES1/EX97 element (Ref. 7.2-3) as two substructures so that there is a local

model in the neighlx)rhood of a central hole and a global model away from the hole, the ddlling degree-of-

freedom for both pseudo-nodes and all_a-nodes along each interface element would need to be suppressed.

If, on the other hand, one were usingan interlace element to attach a blade stiffener to a flat panel, no ddlling

freedom would need to be suppressed for the pseudo-nodes since along this intersection, all six degrees-of-

freedom have some stiffnessassociated withthem, with contributionscoming either from the skin or from the

stiffener. The alpha-nodes however, represent tractions along a substructure thus their ddlling freedoms do

need to be suppressed. ..

In this second example, the user would be required to manually constrain the alpha-node drilling free-

dorns. The first example however, is handled internallyby the El processor shell. That is, when two substruc-
tures connect at an interlace element and neither substructure has drilling stiffness and both use the same

edge and computational frames, the El processor automatically suppresses the drilling freedom (always

degree-ot-freedum 6) for both pseudo- and alpha-nodes. This conditionis detected by looking at an average

normal for each pseudo-node (computed by taking the average of the normals of each incoming substructure

at each pseudo-node) and comparing the substructure normals to this average. If the difference between the
average and all incoming substructurenormais is less than 1 degree for all pseudo-nodes along the interface
element, then the drilling freedom is suppressed by the El processor at all pseudo- and alpha-nodes. If this

test is not passed, then the drillingfreedom is not suppressed; If the user wishes to manually suppress the

drilling freedom, the CONSTRAINT subcommands of the DEFINE ELEMENTS command will permit that sup-

pression.

7.2.4. Command Classes

The generic interface element processor commands are partitioned into three classes. A summery of

these classes is given in Table 7.4.

Table 7.2. Generic Interface Element (El) Command Classes

Command Class Function

RESET Process element reset parameters. RESET is issued in conjunction with
DEFINE and FORM.

DEFINE Process element definitioncommends. Used during pre-processing, this
class includes such informationas the definition of element connectivity and
the definition of active degrees of freedom.

FORM Formationof element matrices.

Each of these classes is discussed indetail in subsequent Sections.

A _ Into Skmrmmtbr C_)MET-AR 7-S

7. Glmer¢Inlerl_e Element_ June22,1994

7.2.5. The El Processor RESET Commands

The RESET commands are used to define certain parameters which are meaningful to each of the other

commands (i.e., to the DEFINE and FORM commands). Once a RESET command has been issued, it

remains valid for each interlace element defined or formed within the current execution. The command may

be issued as many times as necessary within a given execution. There are several of these RESET

commands; they are summarized in Table 7.3 and discussed in detail in subsequent sections.

Table 7.3. Summary of RESET Commands

Keyword

RESET LDI

Default

1

RESET ZERO

Meaning

Logical device index for output.

RESET MESH 0 Mesh number for output.

RESET STEP 0 Load step number for output.

RESET LOAD_SET z Load set number for output.

RESET CONSTRAINT_CASE 1 Constraintcase number for output.

1. _--5 Zero value.

7.2.5.1 The RESET LDI Command

Logical Device Index for the interface elements.

Command Syntax:

RESET LDI -/di

where the integer/di signifies the output logical device index. When used with the DEFINE ELEMENTS

command,/d/must be attached to a new, empty but open data library.When used with the FORM command
class, this/d/must be open and contain the interface element definitions. (Default: 1)

7.2.5.2 The RESET MESH Command

Mash Number. When used with the DEFINE ELEMENTS command, this command assigns the mesh

number to all of the interface elements defined. When used with the FORM command class, the command is

used to identifythe interface elements to be processed.

Command Syntax:

I RESETMESH- mesh I

where the integer mesh identifies the mesh number. (Default: 0)

7-6 A Gene_ Inlm'flceElementforCOMET-AR

June 22. 1994 7. Generic Inlm'_ce Element Prooessor

7.2.5.3 The RESET STEP Command

Load Step Number. When used withthe DEFINE ELEMENTS command, this command assigns the step
number to all of the interlace elements defined. When used withthe FORM command class, the command is

used to identify the interface elements to be processed.

Command Syntax:

J RESET STEP = step

where the integer step identifies the load step number. (Default: 0)

7.2.5.4 The RESET LOAD_SET Command

Load Set Number. When used with the DEFINE ELEMENTS command, this command assigns the load
set number to all of the interface elements defined. When used with the FORM command class, the com-

mand is used to identify the interface elements to be processed.

Command Syntax:

l RESET LOAD-SET . load--set J

where the integer load_set identifiesthe load set number. (Default:1)

7.2.5.5 The RESET CONSTRAINT_CASE Command

Constraint case Number. When used with the DEFINE ELEMENTS command, this command assigns
the constraint case number to all of the interface elements defined. When used with the FORM command

class, the command is used to identifythe interface elements to be processed.

Command Syntax:

[RESET CONSTRAINT_CASE = oonstra/nt_case J

where the integer constraint_case identifiesthe constraint case number. (Default: 1)

7.2.5.6 The RESET ZERO Command

zero value. Zero value is the tolerance used in determining whether or not a node lies along the current
interface element.

Command Syntax:

l RESET ZERO = zero J

where zero is a floating point number. (Default: 1. _.-5)

A Generic Inmrla_ Bement lot COMET-AR 7-7

7.2.6. The El Processor DEFINE Commands

A summary of the DEFINE commands accessible via the generic interface element processor is given in

Table 7.4. Complete descriptions of these commands are provided in subsequent Sections.

Table 7.4. Generic Interface Element (El) Commend Classes

Commend Class Function

DEFINE ELEMENTS Define element connectivity; includes nodal connectivity for each substructure
attached to a given interface element along with interpolation parameters, scale
factors, and other element parameters.

DEFINE FREEDOMS Define valid interface element nodal degrees of freedom for automatic freedom
suppression.

7.2.6.1 The DEFINE ELEMENTS Command

The DEFINE ELEMENTS command has several subcommands. The command syntax is as follows:

DEFINE ELEMENTS

ELEMENT i/CURVED/DSPLINE-{ 1_,3}/P_NODES,,np/SCALE=sca/ef
CONSTRAINTS

ZERO {dl ,d2,d3,thetal,theta2,theta3}
NONZERO

dl., va/uel

theta3 = va/ue6

MPC ddof nindo.

 tPl

/dofl3,md

END_CE_STRAINTS

SS k /LDi-Nd/{/FE/BE/RR/MESH-m¢_/CONS-/con}
NODES - nl, n2,.../GSPLINE-{1,2,3}
CONSTRAINTS

SSm
END_CONSTR_JNTS

/LDI=s/_ {/FE/BE/RR/MESH=mesh/CoNS=icon}

COORDINATES = Xl,X2.... xp/GSPLINE={1 ,?.,3}
CONSTRAINTS

SS p

END_CONSTRAINTS

/I.DI=_ {/FE/BE RIR/MESH=mesh/CONS=icon}

END_NODES = i/j2,.../GSPLINE={I_,3} -

/FILTERx=xt,x2/FILTERy=yt #2/RLTERz=zt,z2/FILTERn=n 1,n2
CONSTRAINTS

END_DEFINE

END_CONSTRAINTS

7-8 A GenericInwrlaoeElen_rlt lot COMET-AR

June 22. 1904 7 Genenc Inlmtace Element ProoKsor

Each of the subcommands must be given in the order they are listed in the example. Each interface ele-

ment is defined by specifying the finite element nodes along each substructureto which it is attached. In this

syntax example, three options for defining these nodes are listed: NODES, COORDINATES, and

END_NODES. The three options are mutually exclusive. That is, along a particular substructure for a given
interface element, either NODES, COORDINATES, or END_NODES may be specified. Nodes along addi-

tional substructuresneed not necessarily be defined usingthe same option,but if options are mixed within an
interface element extreme care should be taken. Each of these options is described in detail in subsequent

sections.

Constraints may be applied at both the substructure and the interface element level. Constraints applied

to the interface element (the first CONSTRAINT subcommand in the example) are applied to the pseudo-

nodes. Constraints applied at the substructure level (the remaining CONSTRAINT subcommands in the

example) are applied to the alpha-nodes. The general syntax for the constraints mimics the syntax of the

COP constraint processor of COMET-AR (Ref. 7.2-2).

While there are default values for all of the qualifiersused in the example syntax (and they are therefore

optional), the subcommands are required inputto the DEFINE ELEMENTS command. Valid subcommands

and their associated optional qualifiersare described in subsequentsections.

7.2.6.1.1 TIIe ELEMENT SuDcommand

The ELEMENT subcommand signifies that a new element definition is beginning. Elements should be

numbered sequentially (to minimize database storage requirements) although there is no absolute require-

ment thatthey be so numbered.

Subcommand syntax:

ELEMENT i {/CURVED/DSPLINE={ 1,2,3}/P_NODES=np/SCALE=scale

where i is an integer identifyingthe interface element number and the optionalqualifiers are described in the

following subsections.

7.2.6,1.1.1 The CURVED Qualifier

This qualifier is required if the interface is to be represented geometricallyas a curve. If the qualifier is not

present, the geometry of the interface will be assumed to be plecewise linear. If the qualifier is present, the
geometry of the interface will be assumed to be a curve and will be interpolated using the function defined by
the GSPLINE qualifier (see Sections 7.2.6.1.4 through 7.2.6.1.6 for a description of this qualifier) tor each
attachedsubstructure.

7.2.6.1.1.2 The DSPLINE Qualifier

This qualifier optionally sets the level of interpolationfor the displacements along the interface. Permissi-
ble values are 1,2, or 3 denoting plecewise linear, and quadratic, or cubic spline functions (respectively) for

the displacement interpolating functions. (Default: /DSPLZNE=Z)

7.2.6.1.1.3 The P_NODES Qua/if'mr

This optional qualifier specifies the number of evenly-spaced pseudo-nodes which are to be placed along
the interlace element. If the number specified by the user is outside the permissible range for this element

configuration, the number of pseudo-nodes will be automatically reset to an appropriate value. If the user

A _ Into _ lot COMET.AR 7-9

7. Geew¢IrmdaeeElementProcessor June22,1994

specifies no value, then the interlace element will define automatically an appropriate number of pseudo-
nodes.

7.2.6.1.1.4 The _G,4LE Qualifier

The SCALE qualifier sets a scale factor used to ensure that the assembled global stiffness matrix will not

be too ill-conditioned. The value of sca/e should be set to withintwo orders of magnitude of E1x (element vol-
ume), where the element volume is from the largest finite element along the interface and E1 is the corre-

sponding longitudinal Young's modulus. (Default value: /SCALE=I. E6)

7.2.6.1.2 The CONSTRAINT Subcommand

The CONSTRNNT subcommand, when issued immediately after an ELEMENT sulx:ommand, is used to

define constraints on the pseudo-nodes. When issued after a SUBSTRUCTURE subcommand or between
SUBSTRUCTURE subcommands, it is used to define constraints on the alpha-nodes. In both cases the syn-
tax used for constraint definition is the same.

Subcommand syntax:

CONSTRAINTS

ZERO {dl, d2,

NONZERO

dl = dl

d2=d2

d3=d3

thetal = #1

theta2 =el

d3, thetal, theta2, theta3}

theta3 = 83

MPC ¢_lofnindu

JdOfll_1

k_of_nd P,'Md

END_CONSTRAINTS

where the di are prescribed displacements; the 0i are prescribed rotations; ddofis the dependent degree-of-
freedom for the multipointconstraint (and may be: dl, d2, d3, thetal, theta2, ortheta3); nindis the number of

independent degrees-of-freedom that define the muitipointconstraint for ddof, o is a floating point constant

to the multipointconstraint equation;the/dof/are the independent freedoms upon which ddofdepends
(and may be: dl, d2, d3, thetal, thata2, or theta3); and the 13i are the coefficients of the/dof/in the muifipoint

constraint equation.

The constraints defined usingthis subcommand are applied to all pseudo-nodes (if issued immediately

following the ELEMENT subcommand) or all alpha-nodes (if issued after a SUBSTRUCTURE, or SS, sub-

command) on the interface. Therefore no node numbers are specified. The syntax is very similar to, but not
identical to, the syntax used in the COP processor of COMET-AR (Ref. 7.2-2).

7-10 A GenericInlm'faa)ElementIor COMET-AR

June 22, 1994 7. Generic Interla_ Element Processor

The phrase 'W,Jltipointconstraint" (or 'IAPC') is, in this context, not completely accurate as it is used to

define relationships among the degrees-of-freedom associated with each pseudo-node or alpha-node rather

than to define relationships among degrees-of-freedom associated with several nodes (or points). Put

another way, the MPC defined in this subcommand will relate two or more degrees-of-freedom at a pseudo-

node or alpha-node to one dependent degree-of-freedom at the same pseudo-node or alpha-node and it will

establish the same relationshipat each pseudo-node or alpha-node. Thus, the MPC connects one degree-of-
freedom at a point to other dagrees-of-freedom at the same point for each point along the interface. The spec-
ificationof MPC's on the interface will be needed when constraintsare defined on the substructures along the

interlace and the finite element nodal computationalframes do not coincide with the edge or interface frames

(the computational frames for the alpha-nodes and the pseudo-nodes respectively).

7.2.6.1.3 The SS Subcommand

The SS subcommand identifies the substructuresconnected to the current interface element. The com-

mand may also be issued as SUBS k or SUBSTRUCTURE k. The number k assigned here will be used

throughout the analysis to identify the substructure.

Subcommand Syntax:

SS k lLDi-sldi {/FE/BE/FIR/MESH=mesh/CONS=icon}
or

SUBS k/LDl=sldi {/FE/BE/RR/MESH=mesh/CONS=io_n}
or

SUBSTRUCTURE k/LDi=sldi {/FE/BE/RR/MESH=mesh/CONS=icon}

7.2.6.1.3.1 The LDI Qualifier

The LDI qualifier identifiesthe logical device index of the library containing the model definition data for

this substructure. The LDI specified here must exist and be open. More than one substructure may exist in a

single library. (Default value:/I, Dz=l)

7.2.6.1.3.2 The FE. BE. RR Qualifiers

This set of qualifiers identifies the form of the idealization of the substructure./F_, identifies a finite ele-

ment substructure, /BE identifies a boundary element substructure,and /RR identifies a Rayieigh-Ritz sub-

structure. Currently, only the /F_ qualifier can be used; COMET-AR has no current capability for boundary
element or Rayleigh-Ritz substructures. This set of qualifiers is a mutually exclusive set (i.e., a substructure

can have no more than one of these qualifiers). (Default value: /FE)

7.2.6.1.3.3 The MESH Qualifier

The optional MESH qualifier identHiesthe mesh number of the substructure model data to be used in

defining this interface element. (Default value: /z_sz-z=0)

7.2.6.1.3.4 The CONS Qualifier

The optional CONS qualifier identifies the constraint set number of the substructure model data to be

used in defining this interface element. (Default value:/CON-_=Z)

A Generic Into Becrmnt let COMET-AR 7-11

7. Germ_ IntBdaoBEiomentProcmmor June22°1994

7.2.6.1.4 The NODES Subcomman¢l

The NODES, COORDINATES, and END_NODES subcommands are mutually exclusive. That is, if

NODES are specified for a given substructure, then COORDINATES and END_NODES may not be (and vice

vema). H NODES are given, then the interface geometry will pass throughthe listed m nodes. If the command

is issued multiple times (Le., once for each substructure), all the nodes listed wgl be used to define the geom-

etry of the interface.

Sul0comn_nd Syntax:

I nl, n_ ... j
I

NODES nm/GSPLINE={1,2,3}I=

where nl, n_ and nm are integer finite element node numbers. (Default value: None)

7.2.6.1.4.1 The GSPLINE Qualifier

The GSPLINE qualifier sets the order of interpolationto be used for the representation of the geometry of
the substructure along the interface. When GSPLINE is setto 1,2, or 3,1hen piecewise linear, or quadratic or

cubic spUne/unctions (respectively) will be used to represent the geometry of the interlace. This qualifier is

required only once per interface element; if it is specified more than once, then only the last value will be
retained. If the/CURVED qualifier has not been set on the ELEMENT command line, then GSPLINE will be

set to 1 regardless of the value specifiedusing the GSPLINE qualifier. (Default:/GSPLII_=I)

7.2.6.1.5 The COORDINA TES Subcommand

The COORDINATES subcommand defines the coordinatesof p points, not necessarily nodes, to be used

to define the geometry of the interface element. The COORDINATES, NODES, and END_NODES subcom-
mands are mutually exclusive. That is, if COORDINATES are specifiedfor a given substructure,then NODES

and END_NODES may not be specified (and vice versa). If COORDINATES are given, then the interlace

geometry wifl pass through the listedp points. If the command is issued multiple times (Le., for each substruc-

ture), all the points listed will be used to define the geometry of the interface.

Subcommand Syntax:

COORDINATES = x1,x2.... xp/GSPLINE={1,2,3} -
IFILTERx=X l,X2/FILTERy=yl,y2/FILTERz=z_,z2 -

/FILTERn-n l,n2

where x1, x2, and Xp are the coordinatesof points (which need notbe nodes); xk yk z/are coordinates; and ni
are node numbers. Currently, p must be 2 and it is assumed that the two points specified by the user are the

end points of a line.

7.2.6.1.5.1 The GSPLINE Qualifier

The GSPLINE qualifier sets the order of interpolationto be used for the representation of the geometry of
the substructure along the interface. When GSPLINE is set to 1,2, or 3, then plecewise linear, or quadratic or

cubic spline/unctions (respectively) will be used to represent the geometly of the interface. This qualifier is

required only once per interface element; If it is specified more than once, then only the last value will be
retained. If the/CURVED qualifier has not been set on the ELEMENT command line, then GSPLINE will be

7-12 A GenericIntwkcoElementio4"COMET-AR

June 22. 1994 7. Generic Inmdace Element Processor

set to 1. The current Implementation restricts the use of this qualifier In conjunction with the COORDI-
NATES subcommand. It may only be used with a linear Interface and therefore must be set to 1.

(Default:/GSPLINE=I)

7.2.6.1.5.2 The FILTER, Qualifiers

ff the COORDINATES subcommand has been used to define the interface geometry, it may be useful to

set filters on the coordinates and node numbers of nodes to be processed, especially if the model is very

large. W'dh no filters, the El processor will search the entire domain for nodes along the interface. Four filters
(/FILTERx,/FILTERy,/FILTERz, and/FILTERn) have been provided. The inputto each is a pair of numbers

representing the iower and upper bounds onthe region to be searched (e.g.,/FILTERX=I. 0, 10.0 /FIL-
Th=200,300). The coordinate filters limit the geometric search region; the node number filter limits the

topographic search region. Any combination of the four filters (or all of them) may be specified. (Default:

None)

7.2.6.1.6 The END_NODES Sulx_mmand

The END_NODES subcommand defines the node numbers at the end points of a line which defines the

geometry of the interlace element. The END_NODES, COORDINATES, and NODES subcommands are
mutually exclusive. That is, if END_NODES are specifiedfor a given substructure,then COORDINATES and

NODES may not be (and vice versa), ff END_NODES are given, then a straight line, passing through the
listed nodes, will define the interface geometry.

Subcommand Syntax:

END..NODES = nl,n2-

/FILTERx=xl,x2 IFIL TERy=y l,y2 IFILTERz=z l,z 2 -
IFILTERn=nl,n 2

where nl,n 2 are the integer node numbers of the interface element end nodes; xi,Y_zi are coordinates; and ni
are node numbers.

7.2.6.1.6.1 The FILTER, Qualifier

It the END_NODES subcommand has been used to define the interface geometry, it may be useful to set
filters on the coordinates and node numbers of other nodes to be processed, especially if the model is very

large. W'dh no filters, the El processor will search the entire domain for nodes along the linear interface. Four
filters (/FILTERx,/FILTERy,/FILTERz, and/FILTERn) have been provided. The input to each is a pair of

numbers representing the lower and upper bounds on the region to be searched (e.g.,
/FILTERZ=10.325,105.920 /FILT_'=475,800). The coordinate filters limit the geometric search

region; the node number filter limits the topographicsearch region.Any combination of the four filters (or all of

them) may be specified. (Default: None)

7.2.6.1.7 The END_DERNE Subcommand

This subcommand signals the end of the interface element definitions. It should only be issued after all

interface elements have been defined.

A Generic Into Elanem br COMET-All 7-13

7. Germrk:Intlda_ ElementPmcmsor Ju_ 22, 1994

7.2.6.1.8 /nput Damsets Required by the DEFINE ELEMENTS Command

Input datasets are those which define the individual substructureswhich are connected to the interface
elements. The datasets listed in Table 7.5 must exist for each substructure used to define an interface

element. A description of the contents of each data object may be found in Ref. 7.2-3.

Table 7,5, Input Datasets Required by the Define Elements Command

I)ataut

CSM.SUMMARY...rnesh

NODALCOORDINATE...mesh

NODALDOF..concwe.mesh

NODALSPEC_DISP./dset.ooncase.mesh

NODAl_TRANSFORMATION...mesh

_.DEFINITION...mesh

E/Wame.NORMALS...mesh

I)e_ription

Model summary for inputSubstructure

Substructurenodal coordinates

Substructureconstraints

Substructurespecified displacements

Nodal global-to-localtransformations

Element definitionfor input Substructures

Element nodal normals for Substructures

CSM

NCT

NDT

Nv'r

NTT

EDT

EAT

Note that if displacements are specifiedfor a given substructure, they must be specified prior to calling
the B processor to DEFINE ELEMENTS. If there are no specifieddisplacements on any substructures then

the NODAL.SPEC_DISP./dset.concase.mesh dataset is not required.

7_.5.1.9 Output Datasets Created/Ulxlated by the DEFINE ELEMENTS Command

Datasets output to the interface element libraryare those which define the individual interface elements.
Along with the usual datasets (i.e., those created by ES element processors) several additional objects are
used to define the interface elements. The datasets listed inTable 7.6 will exist in the interface element library.

The datasets marked with the dagger (1")are new objects for which lull descriptions appear in Chapter 10 of
this report. A description of the contents of each of the other data objects (those not marked with a dagger)

may be found in Ref. 7.2-3.

Table 7.6. Output Datasets Created/Updated by Define Elements Command

Datasat

CSM.SUMMARY...mesh

NODALCOORDINATE...n,,,...sh

NODALDOF..corcase.n,,,,.Jh

NODALTRANSFORMATION...mesh

NODALTYPE...mesh1"

E/Wame.DEFINITION...mesh

E/Wame.ELTYPE...mesh1"

_.NODSS...mesh 1"

E/Wame.NORMALS...mesh_

E/Wame.PARAMS...mesh_

E/Wame.SCALE...mesht

EttName.SCOORD...mesh_

I_lcripUon

Model summary for interface element library

Type
CSM

Nodal coordinates NCT

Constraints NDT

Nodal global-to-localtransformations NTI"

Node types NAT

Element definition EDT

List of finite element types along each interface element EAT

List of substructures connected to each interface element EAT

Normal vectorsfor finite element nodes and pseudo-nodes EAT

Interface element parameters EAT

Scale factor for each interface element EAT

EATPath coordinatesfor nodes on interface element

7-14 A GenericInterlaceElementlotCOMET-AR

June22, 1904 7. GenericInterlaceElementProcessor

Table 7.6. Output Datasets Created/Updated by Define Elements Command (Continued)

E/Wame.SSlD...mesht Listof substructuresconnected to each interface element EAT

E/tNarne.TANGENT_S...mesh1" Element path tangent vectorsfor nodes and pseudo-nodes EAT

EItName.TANGENT_T...mesht Element surface tangents for nodes and pseudo-nodes EAT

Computational-to-giobaltransformationmatrices for the finite EAT
element nodes in each interface element.

t New Object; see Chapter 10 for doscription.

EItName.TGC...r__sht

7.2.6.2 The DEFINE FREEDOMS Command

The DEFINE FREEDOMS command triggers the suppression of inactive degrees-of-freedom. The El
processor will use the information supplied throughthe DEFINE ELEMENTS command to decide whether or

not there am globally inactive degrees-of-freedom (e.g., drilling freedoms). The command has no

subcommands or qualifiers. Execution of the El processor is all that is required. The command syntax is

simply:

DEFINE FREEDOMS

The determination of the active degrees-of-freedom for the pseudo-nodes and the alpha-nodes is made

by the interface element processor during the definitionof the elements. In the present implementation, the
computational frames for both the pseudo-nodes and the alpha-nodes are defined so that the drilling degree-

of-freedom is always the sixth degree-of-freedom. During the element definition, two parameters are set

automatically, DrilLDof and Drill_Sup,and saved inthe EAT data object named EItName.PARAMS..muh (see
Section 10.3 for a description of this data object). The parameter Drill_Dof is set to six. The parameter

DrilLSup, is a flag which indicateswhether or not the Drlll_Dof degree of freedom isto be suppressed.

The decision to suppress the drilling degree-of-freedom is made based on two criteria. First, the
suppression need occur only if the interlace element connects two substructures, as more than two
substructures cannot be coplanar. Second, if the difference between either substructure normal and the

average normal is greater than one degree at any pseudo-node, the drillingdegree of freedom is not flagged

for suppression (i.e., DrilLSup is set to<£alse>), if the difference between both substructure norrT_isand
the average normal are within one degree for all pseudo-nodes, the drillingdegree-of-freedom is flagged for

suppression (i.e., Drill_Sup is set to<t:z-ue>).

When the DEFINE FREEDOMS command is issued, the processor reads in the values of DrilLDof and

DrillSup set for each interface element when the DEFINE ELEMENTS command was issued. If Drill_Sup has

been set to <true>, than the degree-of-freedom specifiedby DrllLDof is suppressed for each pseudo- and
alpha-node in the interface element. If DrULSu p has been set to <£alse>, then no dogrees-of-freedom are

suppressed for the interface element pseudo- and alpha-nodes. Once the inactive freedoms have been
suppressed, the remaining active degrees-of-freedom are assigned equation numbers.

A GenericInto Elementkx COMET-AR 7-15

7. GenericIrmcla_ ElementProoeuor June22, 1994

7.2.6.2.1 /nput Damsets Required by the DERNE FREEDOMS Command

Inlet data,setsforthe DEFINE FREEDOMS command are those which define the interlace elements. The

datasets listed in Table 7.7 are used by the El processor during processing of this command. A description of

the EAT object may be found in Chapter 10; all other objects are described in Ref. 7.2-3.

Table 7.7. Input I)atasets Required by the DEFINE FREEDOMS Command

Dataut

CSM .SUMMARY...mesh

NODAL.DOF..oonc_e.mesh

NODAL.TRANSFORMATION...mesh

E/Wame.DEFINITION...mesh

EItName.P ARAMS...mesh

• Description

Model summary for interlace elements

Pseudo-node and alpha-node constraints

Nodal global-to-localtransformations

Element definitionfor interface elements

Interface element parameters

CSM

NDT

NTI"

EDT

EAT

7.2.6.2.2 Output Datasets Created/Updated by the Define Freedoms Command

Output datasets listed in Table 7_ are those which define the active nodal degrees of freedom and the

nodal reference flames. A descriptionof these objects may be found in Ref. 7.2-3.

Table 7.8. Output Datasets Created/Updated by the DEFINE FREEDOMS Command

Dmasm Description

CSM.SUMMARY...mesh Model summary for interlace elements CSM

NODAL.DOF..corcase.mesh

iNODAL.TRANSFORMATION...mesh

Pseudo-node and alpha-node constraints NDT

Nodal global-to-local transformations NTT

7.2.7. The El Processor FORM Command

There is presently only one FORM command implemented within the El processor, the FORM
STIFFNESS/IVIATL command. This command triggers the formation of the element stiffness matrices for all of

the interface elements identifiedby the processor RESET commands. The command syntax is:

I FORM STIFFNE_OAATL

7.2.7.1 Input/Output Data,sets

Input datasets are largely those created during the interlace element definition.The command output is,
for each interface element, the element stiffness matrix which may be assembled along with other finite
element matrices.

7.2.7.1.1 /nput Datasets Required by the FORM STIFFNESS Command

Input datasets am those which define the interface elements. The datasets listed inTable 7.7 am used.by
the El processor during the processing of this command. A description of the EAT and NAT objects may be

found in Chapter 10; all other objects are described in Ref. 7.2-3.

7-16 A Genetic I_ Element for COMET.AR

June22,1994 7.GermricInmrlaoeElemefltProcessor

Table 7.9. Input Datasets Required by FORM STIFFNESS Command

Dataset

CSM.SUMMARY...mesh

NODAL DOF..concase.mesh

NODAL.TRANSFORMATION...mesh

NODAL.TYPE...mesh

EItName. DEFINIT ION...mesh

E/Wame.ELTYPE...mesh

F-/tName.NodSS...mesh

EItName.NORMALS...mesh

E/Wame.PARAMS...mesh

E/tName.SCALE...mesh

EItName.SCOORD...mesh

E/tName.SSID...mesh

E/tName.TANGENT_S...mesh

E/tName.TANGENT_T...mesh

EItName.TGC...mesh

Description

Model summery for input interlace elements CSM

Pseudo-node and alpha-node constraints NDT

Nodal global-to-local transformations NTT

Node types NAT

Element definition for interlace elements EDT

Finite element types along each interlace element EAT

SS connected to each node of each interlace element EAT

Normal vectors for finite element nodes and pseudo-nodes EAT

Interface element parameters EAT

Scale factor for each interlace element EAT

Path coordinates for nodes on each interface element EAT

Listof substructuresconnected to each interface element EAT

Element path tangent vectors for nodes and pseudo-nodes EAT

Element surface tangents for nodes and pseudo-nodes EAT

EATComputational-to-giobal transformation matrices for the
finite element nodes in each interface element.

7.2.7.1.2 Output Datasets Created�Updated by the Form Stiffness Command

Only one dataset is output by the FORM STIFFNESS commend, EItName.STIFFNESS...meeh, an EMT
object which contains the element stiffnessmatrixfor each interlace element.

7.2.8. El Processor Limitations

Along with the limitations listed in Section 1.5, there am currently limits on problem parameters which

may be changed by adjusting internal parameter statements. If adjustmentsto these limits are required, the
COMET-AR maintenance team should be consulted. The current limits are listed in Table 7.10.

Table 7.10. Current Limits on the Interlace Bement Implementation

Maximum number

Maximum number

Maximum number
interface element

Parameter

of degrees of freedom per node

of inputgeometry points

of pseudo-nodes which may be generated or specified per

FORTRAN Value
Parameter

MaxDoF 6

MaxXYZ 15

MaxPpE 40

of substructuresconnectedto any one interlace element

Maximum number of alpha-nodes which may be generated per interfaceelement MaxAlT 60

Maximum number MaxSpE 4

Maximum number of nodes along the interface per substructure

Maximum number of finite elements along the interface per substructure

Maximum number of interface elements

Maximum total number of nodes per substructure

Maximum number of finite element types in each substructure

MaxNpS 50

MaxEpS 25

MaxNIE 30

MaxTnS 20000

MaxTyp 10

MaxFEo 3Maximum order of finite elements attached to an interlace element

A Genelric Into Bement lot COMET-AR 7-17

7. Genetic InlBrfacl Elmnent Procm_ June 22, 1994

7.2.9. El Processor Error Messages

The El processor shell performs error checking each time a data object is manipulated. The processor

also checks certain maximum values to ensure that they am within the limits set out in Table 7.10. Addition-

ally, error messages am printed if user input is incorrect; in this case, the user will typically be prompted for

the correct input and given the opportunityto re-enter the data.

7.2.10. Examples and Usage Guidelines

7.2.10.1 Example 1: An Example of DERNE ELEMENTS.

The following procedure defines two interlace elements. The first element connects finite element sub-
structures 1 and 2; the second interlace element connects finite element substructures 1 and 3. Substruc-

tures 1, 2, and 3 reside in libraries 1, 2, and 3 respectively.A nonzero displacement of 0.01 in the 3-direction

(in the interface frame) has been applied to the pseudo-nodes of interface element 1. The same element has
a zero constraint on the 3-direction rotation on the alpha-nodes in substructure 1 (in the edge frame for sub-

structure 1) and a zero constrainton the 2-direction rotationon the alpha-nodes in substructure2 (in the edge

frame for substructure 2). No additional constraints have been applied to interface element 2. The interface
elements w111be written to a libra_ with a logicaldevice index of 4 and will be assigned a mesh identification

of 0, a load set number of 1, and a constraint set of 1.

*procedure EI_Define

Define Interface Elements

run EI1

*end

• Processor Resets

reset Idi = 4

reset mesh = 0

reset step = 0

reset load_set = i

reset cons_set = 1

• Element Definitions

DEFINE _S

ELEMENT 1 /DSPLINE=3

CONSTRAINTS

NONZERO

d3 = 0.01

END_CONSTRAINTS

SS i /LDI=I /FE /MESH=0 /CONS=I

NODES = 1,7,2 /GSPLINE=3

CONSTRAINTS

ZERO theta3

END_CONSTRAINTS

SS 2 /LDI=2 /FE /MESH=0 /CONS=I

NODES = 25,50,5 /GSPLINE=3

CONSTRAINTS

ZERO theta2

ENDCONSTRAINTS

ELEMENT 2 /DSPLINE=3 /SCALE_10000.

SS 1 /LDI=I /FE /MESH=0 /CONS=I

NODES = 35,45,2 /GSPLINE=3

SS 3 /LDI=3 /FE /MESH=4 /CONS=2

NODES = 110,200,10 /GSPLINE=3

END_DEFINE

7-18 A Genedc InlBrlaoe El_mmt for COMET-AR

June 22, 1994 7. Generic Intsdace Element Processor

7.2.10.2 Example 2: An Example of DEFINE FREEDOMS

Thefollowingexamplerunstreamsetstheactivedegreesoffreedomfor interfaceelementslocated inthe
librarywithlogicaldeviceindexof I. The activefreedomsaredefinedforthoseinterfaceelementsassociated
withmesh0, load set andconstraintset 1.

"procedure Defn_EI_Freedoms
• Suppress inactive degrees of freedom

run EII

• Processor Resets

reset Idi = 1

reset mesh = 0

reset step = 0

reset load_set = 1

reset cons_set = 1

• Issue command to set active freedoms

DEFINE FREEDOMS

STOP

"end

7.2.10.3 Example 3: An Example of FORM STIFFNESS

The following example runstmam forms the element stiffness matrices for interface elements located in

the library with logical device index of 1. The stiffness matricesare defined for those interface elements asso-
ciated with mesh 0, load set and constraint set 1.

*procedure Form_El_Stiffness
• Form Element Stiffness matrices

run Eli

• Processor Resets

reset idi = 1

reset mesh = 0

reset step = 0

reset load_set = 1

reset cons_set = 1
• Issue command to form stiffness

FORM STIFFNESS/MATL

STOP

*end

7.2 -2

7.2-3

References

Stanley, G. M. and Nour-Omid, S., The Computational Structural Mechanics Testbed Generic
Structural-Element Processor Manual, NASA Contractor Report 181728, March 1990.

Stanley, G.M., Hurlbut, B., Levit, I., Stehlin, B., Loden, W., and Swenson, L., COMET-AR User's
Manual, LMSC Report #P032583, 1993.

Stanley, G. M. and Swenson, I_, HDB Object-Oriented Database L#Jlitiesfor COMET-AR, NASA CSM
Contract Report, August, 1992.

A Generic InlBdace Bemeflt lot COMET-AR 7-19

7.GenericIntmtiaoeElementPro_uor June22.1994

THIS PAGE INTENTIONALLY BLANK

7-20 A Generic I_ Element lot COMET-AR

June22,1994 7. GenericIrmrlaoeElementProcessor

7.3. Processor El1 - Hybrid Variational (HybV) Interface
Element

7.3.1. Element Description

Processor El1 contains a hybridvariational interface element (hereafter referred to as the HybV interface

element) which may be used to connect substructures that have been modeled with independently dis-

creUzed, nodally incompatiblefinite element models. The element's active degrees of freedom include poten-

tially three displacements and three active rotations per node as well as traction degrees of freedom along

the connecting finite element substructures.NI incomingsubstructuresmust have the same number of active
degrees of freedom at each node (Le., a substructurewith five active freedoms per node cannot be con-

nected to a substructurewith six active freedoms per node throughthe HybV interface element). The element
formulation has been discussed indetail in References 7.3-1 through 7.3-3, however, key elements of the for-

mulation are reproduced in the following sections. Additionaldiscussion of the implementation of computa-
tional reference trames is also included.

7.3.1.1 Theoretical Description

In the following discussion, it is assumed that there is only one interface element in the system. This

assumption is made solely to simplifythe discussion; the actual implementation is general and accommo-
dates more than one interface element. (Note: current FORTRAN parameter definitions limit the number of

interface elements to 30 par analysis; see Section 7.2.8)

Consider, for example, the domain shown in Figure 7.2 and modeled as three independently discretized

substructures, E_I,E_2,and E43.The depiction of three substructures is for discussionpurposes only; the ele-
ment formulation is generally applicable to an arbitrary number of independently discretized substructures.

The generally curved interface element path, SI, is discmtized with a mesh of evenly spaced pseudo-nodes
(open circles in the figure) which need not be coincidentwith the interface nodes (filledcircles in the figure) of

any of the substructures. That is, the discmtization of the interface path is independent of the discretization of
the connected substructures.

Interface Element Finite element
nodes

pseudo-nodes

Figure 7.2. HybV Interface Element

A GenericintDrfim_ElementlotCOMET-AR 7-21

PRECEDING PAGE BLANK NOT FILMED

7. Ge¢_ic In.lace Element _ June 22, 1994

The hybrid variational formulation uses an integral form for the compatibility between the interface ale-
ment and the substructures. The total potential energy is modified by adding a constraint integral for each

interface. Namely,

Nss nss/_ T Nss'

k: 1 j: I_S

where _ is the modified total potential energy of the system, the subscriptkdenotes the substructure, N. is

the total number of substnm_ras (three for Figure 72.), r_ is the number of substructures connected to the

specific interlace element (three for Figure 7.2), v is the interface element displacement vector (transformed

to the edge frame for substructureJ),_.jis a vectorof Lagrange multipliers(in the edge frame) for substructure

j, uj is the displacement vector (in the edge frame) for substructure j, 11c is the constraint integral, and S is
the path of integration aiong the interface. The potential energy of each substructure, 1"Ik, is defined as usual

by

1 T. T. (7.3-2)
N k = _qkKkqk-- qklk

where Kk is the stiffness matrix, qkis the generalized displacement vector, and fkis the external force vector
corresponding to substructure k, all in the finite element nodal computational frame.

The form of the displacement uj is assumed as is usual in the finite element method except that it is

assumed in the edge frame (the computational frame for the alpha-nodes), namely, uj = Udj = Ndjqdj,
where qd; is a vector of generalized displacements for the finite element nodes of substructure j along the
interface. 'The vectors qd: are transformed subsets of the generalized giobal displacement vector qk" The

unknown Lagrange multi_iers, _.j,are assumed to be of the form _.j = _'dj : RdjO'dj"

Along each interface element it is assumed that the displacement, v, is defined in the edge frame by

: Vdj = 4><i (7.3-3)vj

where d) is a matrix of interpolating functions and qd is a vector of generalized displacements associated
with the images of the pseudo-nodes on substructurej. The interpolation matrix 4) is formed by passing a

cubic spline through the evenly spaced pseudo-nodes.

Making the appropriate substitutions,Equation (7.3-1) yields the following expression for the total poten-

tial energy:

s 1 T T = (_qkKkqk_qk,k)+ (T_T T T _(Id jl_j qs + Gd jMj qjJ (7.3-4)

k= 1 j= I

where the vector qs is a vector of pseudo-node displacements (q_, transformed from the edge to the

interface frame) and the vector qj is a subset of the global nodal coml_)utational vector, qk. The matrices Mj

and Gj are integrals on the interface which contain transformations and are defined as

where N, R, and d)

following manner.
are as previously defined and the Vansformations, Tedj and "_i

(7.3-s)

are defined in the

7-22 A Generic Imdace _ lot COMET-AR

June22. lgg4 7. GenericIrmda¢_Element_r

The matrix Ted transforms the qdj into qj (i.e., transformsfrom the edge to nodal computational frame)
and is defined by ff_erelationship:

qdi= Tdciqj= TdgiTgciqj . (7.3-6)

where Tdg permits the coupling of the alpha-nodes and the finite element nodes and is the global-to-edge
frame transformation which may be constructed at each finite element node once the edge frame has been

defined and which is constructed by the El shell and passed to the El1 kernel. The matrix Tgc is the nodal-
computational-to-global transformation matrix which resides in the NTI" data object, exists fol/ each node in

each finite element substructure, and is passed down to the El1 kernel by the El shell.

The matrix "_. permits the coupling of the alpha-nodes and the pseudo-nodes and transforms the edge
frame pseudo-n_Je displacements for each substructure into the interface frame pseudo-node displace-

ments, the _. Interlace frame pseudo-node displacements are defined for each substructure in terms of the

edge frame pseudo-node displacements as:

The matrix TPd. is the edge-to-global frame transformationfor the pseudo-nodes and is constructed at the
image of eacl_ i_seudo-node for each substructureby the El processor shell.The matrix Tr_ is the global-to-
interlace transformation which is constructed at each pseudo-node by the El processor shell.

The hybrid variational interface element "stiffness"matrix thus contains coupling terms which augment
the stiffness matrices of the substructuresto which each interface element is attached. For the interface ele-

mant shown in Figure 7.?. the interface element "stiffness"matrix, Ke, and vector of unknowns are given by

i o oo M,O o"

0 0 0 0 M2 0

ooooo,l ilKI = 0 = T ;' qs =
GT IMT 0 0 G1 0 0 0

qcl

qc2

qc3

qs • (7.3-8)

Gd 1

T T
0 M2 0 G2 0 0 0 (Zd2;

T T
0 0 M3 G3 0 0 0 (X'd3

Users should fully understand the differences among the various computational reference frames. Con-
straints along the interface, should they be required, must be applied in the appropriate computational

frames, namely, the edge frames for the alpha-nodes, the interface frame for the pseudo-nodes, and the

nodal computational frame for the finite element nodes. In general, these may all be different frames and a
zero value in one frame may well msuit in muitipointconstraintsin the other two frames. Additional cam must

be taken in the application of ddllingfreedom suppression which is automatic for the pseudo-nodes but may
need to be applied to the alpha-nodes. For both pseudo-nodes and alpha-nodes however, the ddlling degree-

of-freedom is always the sixthdegree-of-freedom.

AGenericInmrla_Elementfix COMET.AR 7-23

7.GenericIrmdaeeElementProcessor June22,1994

7.3.2. Displacement and Tmctipn Representation

For each interface element, the form of the substructurenodal displacement along the interface, Ud, is

assumed inthe edge frame using the usual Lagrange shape functions along each substructureedge (i.e., lin-

ear functions for 4-nocle finite element edges; quadraticfunctions for 9-n0de finite element edges, etc.). The

interface displacement, vs, is assumed inthe interface frame and depends onthe function chosen by the user
(plecewise linear, or quadratic or cubic spline functions). The unknown Lagrange multipliers, _,d, are also

assumed in the edge frame for each substructure and are taken to be constants when linear finite elements

are used along the interface for a given substructure, and linear functions when quadratic finite elements are

used along the interface for a given substructure.

7.3.3. Element Geometry and Node Numbering

The HybV interface element is illustratedin Figure 7.3. Finite element nodes are shown as filled circles,

pseudo-nodes are shown as open circles.The tractionsare attached to the finite elements along the interface
of each substructure through alpha-nodes. These alpha-nodes have no actual physical location; they are

celled nodes only to facilitate the implementationof the interface element. Alpha-nodes are defined according

to the finite element type along the substructure edge. Since the tractions are assumed to be linear when 9-
node finite elements are used, two alpha-nodes are created for each 9-node finite element along the inter-
face. Likewise, since tractions are assumed to be constant when 4-node finite elements are used, one alpha-

node is created for each 4-node element along the interface.
Element node numbering includesthe node numbersof the nodes along the interface from each connect-

ing substructure as well as the interface element pseudo-nodes and alpha-nodes. Both the pseudo- and

alpha-nodes are generated internally,assigned nurmers internally, and are in general, completely transpar-
ent to the user. Their node numbers begin at I and run sequentially untilall are numbered. New pseudo- and

alpha-nodes are generated by each interface element. An example of interface element connectivity is shown
in Rgure 7.3.

7-24 AGenerictntm'faceEkimentIorCOMET-AR

June 22. 1994 7. GefledcInlerlaceElementProcessor

Finite Element nodes

Pseudo-nodes

Int_aoe elementoonnec'_ity:
111

112 SubslnJclure1 (finiteelement
113 : nodes)
114
115
11
12
13
13
15
16
17

Sub$1ncture2 (f_ite element
nodes)

1

2 I%eudo-nodes
3
4
5
6
7
8
9
10
11
12
13
14

AJpha-nodes- twoper finite
elementalongeach
subs_uclum
connectidat the
klWdace

Figure 7.3. Node Numbering for the HybV Interface Element

HybV interface elements can only intersect each other at interface element ends. When two interlace ele-

ments do intersect, a duplicate pseudo-node is placed at the intersection (i.e., end) point.

7.3.4. Element Implementation Status and Limitations

The HybV interface element is a one dimensional element so it will only join substructures along a line or

general curve in space. H may only be used for linear, static, elastic analysis at present although in the future

it is expected that a general nonlinearity capability will be developed and implemented. Attached

substructures must be modeled using either 4-, 8-, or 9-node quadrilateral or 3- or 6-node triangular finite

elements. There is currently no 2-dimensional version of the HybV element (to connect solid models). The

limitations on the number of incoming substructures, degrees-of-freedom, and other problem parameters are

dictated by the limitations enumerated in Section 7.2.8.

7.3.5. References

7.3-1

7.3-2

7.3-3

Aminpour, M. A., Ransom, J. B., and McCleary, S. L., "Coupled Analysis of Independently Modeled
Finite Element Subdomains," AIAA Paper Number 92-2235, 1992.

Aminpour, M.A., McCleary, S.L., and Ransom, J.B., "A Global/Local Analysis Method for Treating
Details in Structural Design," Proceedings of the Third NASA Advanced Composites Technology

Conference, compiled by J.G. Davis, Jr. and H.L. Bohon, NASA CP-3178, Vol. 1, Part 2, 1992, pp.
967-986.

Ransom, J. B., McCleary, S. L., and Aminpour, M. A., "A New Interface Element for Connecting

Independently Modeled Substructures," AIAA Paper Number 93-1503, 1993.

A GenericInlmlaceElementlot COMET-AR 7-25

7. Genehc Immla_ Eloment _ June 22. 1994

THIS PAGE INTENTIONALLY BLANK

7-26 A Generic Intmlace Element lot COMET.AR

June22, 1994 8. MasterMod_Generdon

11 Master Model Generation

8.1. Overview

In this Chapter, generation of the master model is described. Current assemblers, renumbering strate-

gies, and solvers, all require that element matrices exist in a single libraryfile and that a single giobal system
matrix exist for a given model. The interface element allows the user to keep different models in different

library files; therefore, these files must be combined into a single library,or Master Model. The Master Model

generator, processor MSTR, takes as input any number of substructures and writes out a single database
containing one, consolidated, structural model. When interface elements are used, a Master Model must be

built using this utility processor regardless of whether the input substructuresreside in one or more than one

library.The interface elements are always written out to a separate database libraryand thus will always have
to be combined with the substructuresto which they are connected.

The Chapter is organized as listed in Table 8.1

Table 8.1. Outline of Chapter 8: Master Model Generation

Section Processor Function
i

2 MSTR Generate a single master model

AGermdcIntmtaceElementlotCOMET-AR 8-1

PRECEDING PAGE BLANK NOT FILMED

8. MUm" Model Gemmmton June 22. 1994

THIS PAGE INTENTIONALLY BLANK

8-2 A Genedo Inl_moe Element _' COMET-AR

June22. 1994 8 MasterModelGeneralmn

8.2. ProcessorMSTR- Master Model Generator

8.2.1. General Description

The MSTR processor takes as input any number of substructures (currently they may be either finite

element or interface element substructures)and creates a single, consolidated structural model. It performs
this merging of substructuresby stackingall of the nodes in a list(Le., nodes from substructure 1, nodes from

substructure 2, atc.) and relabeling them sequentially. Nodes from the interface element substructure are

added at the end of the node list, with pseudo-nodes listed first and alpha-nodes following. The same

stacking and relabeling is also performed on the element definitions.Once the nodes have been relabeled,
the element connectivitles are changed to reflect the new node labels. All the data needed to solve the

system of equations are saved based onthe new node and element labels. It should be noted that at no time
in this process is the originaldata changed; the MSTR processor creates an entirely new model, in a library

separate from the original substructures'data libraries. The MSTR processor also has a post-processing

function which permits the user to splitthe NODAL.DISPLACEMENT.*results data object of the Master Model

into substructure objects for furtherpost-processing.

8.2.2. Command Classes

The MSTR processor recognizesthree command classes as listed in Table 8.2. Each of these command
classes has different keywords and additionalsubcommands which are described in the following sections.

Table 82. Master Model Generator (Processor MSTR) Command Classes

Command Class

DEFINE

Function

Defines substructures to be merged.

MERGE Merges specifiedsubstnJcturesinto a single master model.

POSTPROCESS Splits the master model results data back into substructure
results data for these substructuresspecified.

AGenericInlerlm=eElementlotCOMET-AR 8-3

PRECEDING PAGE BLANK NOT FILMI/_

8. Mast_ Mo_l Generation June 22, 1994

8.2.3. The MSTR Processor DEFINE Command

The DEFINE command class currently has only one form, DEFINE SUBSTRUCTURES. This command

has several associated subcommands and additional qualifiers. The DEFINE SUBSTRUCTURES command

must be issued prior to both the MERGE and the POST_PROCESS commands or the processor will not

know which substructures need to be merged or post-processed. A template for execution of the DEFINE

SUBSTRUCTURES command is provided as follows:

DEFINE SUBSTRUCTURES

SUBSTRUCTURE i/FE

LIBRARY = ildi

MESH = imesh

LOAD_SET = iiset

CONSTRNNT_CASE = incon

LOAD_STEP = iistep

SUBSTRUCTURE j/IE

LIBRARY = jldi

MESH = jmesh

LOAD_SET = jiset

CONSTRAINT_CASE = jncon

LOAD_STEP = jistep

END_DEFINE

Each of the subcommands and qualifiers am discussed in detail in subsequent sections.

8.2.3.1 The SUBSTRUCTURE Subcommand

The SUBSTRUCTURE subcommand signifiesthat a new substructuredefinition is beginning.These sub-

structures are usually the same as those identifiedduringthe DEFINE ELEMENTS process usingthe El pro-
cessor.

Subcommand syntax:

SUBSTRUCTURE i {/FE/BE/RR/IE}

where i is an integer identifying the substructure number and the optional qualifiers are described in the

following subsection.

8.2.3.1.1 The/FE,/BE,/FIR, RE Qualifiers

This set of qualifiers identifies the form of the idealization of the substructure./F'_, identifies a finite ele-
ment substructure, /s_. identifies a boundary element substructure, /RR identifies a RayieigWRitz substruc-

ture, and / z_. identifies a substructurewhich contains interface elements. Currently, onlythe / rl and / z z

qualifiers can be used;, COMET-AR has no current capability for boundary element or RayieigWRitz sub-

structures. This set of qualifiers is a mutually exclusive set (Le., a substructurecan have no more than one of

these qualifiers). (Default value: None)

8-4 A Generic I_ Element lot COMET-AR

June 22, 1994 8. Mistlr Model Gefleralion

8.2.3.2 The LIBRARY Subcommand

The LIBRARY subcommand identifiesthe logical device index of the library containing this substructure.

Subcommandsyntax: .

LIBRARY = Idi

where/diis an integer identifyingthe logical device index number of the library. (Default value:z)

8.2.3.3 The MESH Subcommand

The MESH subcommand identifiesthe mesh number of the current substructure.

Subcornmand syntax:

L MESH = mesh

where mesh is an integer identifyingthe mesh number of the current substructure. (Default value: o)

8.2.3.4 The LOAD_SET Subcommand

The LOAD_SET subcommand identifiesthe load set numberfor the current substructure.

Subcommand syntax:

I LOAD_SET =/oad._set

where load_set is an integer identifying the load set number of the current substructure. (Default value: l)

8.2.3.5 The CONSTRAINT_CASE Subcommand

The CONSTRAINT_CASE subcommand identifiesthe constraint case number for the substructure.

Subcommand syntax:

CONSTRAINT_CASE = consb-aint_case I

where constra/nt_case is an integer identifyingthe constraint case for this substructure. (Default value:l)

8.2.3.6 The LOAD_STEP Subcommand

The LOAD_STEP subcommand identifiesthe load step number for this substructure.

Subcommand syntax:

LOAD_STEP = load_step I

where /oad_step is an integer identifying the load step number for this substructure. For linear analyses,

k)ad step should be zero. (Default value: 0)

A Gene_ Interlace Element lot COMET.AR 8-5

8. Msst_Mod_GBrmm_ _22,1994

8.2.3.7 The END_DEFINE Subcommand

The END_DERNE subcommand signalsthe end of substructure definitions.

Subcommand syntax:

I END_DEFINE I

8.2.4. The MERGE (or MERGE_SUBSTRUCTURES) Command

This command is used to trigger the merging of the identified substructures. The input to the MERGE

command is a list of substructuresto be merged into the master model (for exampieHERGE 1,3,4 implies
that substructures 1,3, and 4 are to be merged intothe master model). The command requires that the sub-

structures be listed usingthe substructureidentifierof the DEFINE SUBSTRUCTURES command (e.g., the
substructure identified as substructure 2 when defined will be merged as substructure2). A template for exe-

cution of the MERGE command follows:

MERGE ij, k OR MERGE_SUBSTRUCTURES i,j,k

STOP

LIBRARY = /di

FILE = fi/e_name

MESH = mesh

LOADSET = /set

CONSTRAINT_CASE = ncon

LOAD_STEP = istep

EAT = data_object_name

NAT = data_object_name

SVT = data_object_name

Each of the subcommands are discussed in detail in subsequent sections.

8.2.4.1 The LIBRARY Subcommand

The LIBRARY subcommand identHiesthe logicaldevice index of the librarywhich will containthe merged

master model.

Subcornmand syntax:

I

LIBRARY = Idi I

where Idi is an integer identifyingthe logicaldevice index number of the library. If the LIBRARY subcommand
is not issued, MSTR will use the next available logicaldevice index. (Default value: None)

8-6 A GenericIntwla_ BementlotCOMET-AR

June 22, 1994 8. Master Model Generation

8.2.4.2 The FILE Subc0mmand

The FILE subcommand identifiesthe name of the library which will contain the merged master model.

Subcommand syntax:

l FILE = file_name

where file_name is a character string identifying the name of the master model library. If the LIBRARY
subcommand is not issued, MSTR will assign the next available logical device index to filename. (Default

value: None)

8.2.4.3 The MESH Subcommand

The MESH subcommand identifiesthe mesh number assigned to the merged master model.

Subcommand syntax:

I MESH=mesh I

where mesh is an integer identifyingthe mesh number of the merged model. (Default value: o)

8.2.4.4 The LOAD_SET Subcommand

The LOAD_SET subcommand identifies the load set number assigned to the merged master model.

Subcommand syntax:

L LOAD_SET =/oad_set J

where load_set is an integer identifying the load set number of the merged model. (Default value: 1)

8.2.4.5 The CONSTRAINT_CASE Subcommand

The CONSTRAINT_CASE subcommand identifies the constraint case number assigned to the merged
master model.

Subcommand syntax:

L CONSTRAINT_CASE = constraint_case

where constra/nt_case is an integer identifyingthe constraint case forthe merged model. (Default value:z)

8.2.4.6 The LOAD_STEP Subcommand

The LOAD_STEP subcommand identifiesthe load step number assignedto the merged master model.

Subcommand syntax:

LOAD_STEP = load_step]

where Ioadstep is an integer identifyingthe load step number for the merged model. For linear analyses,

load_step should be set to zero. (Default value: o)

A Genetic Interlace Bement lot COMET-All 8-7

8. Mulm'ModJC._rtem_ _22,1994

8.2.4.7 The EAT Subcommand

The EAT subcommand identities additional element attributetables which are to be merged for the listed

substructures.

Subcommand syntax:

I EAT = data_object_name J

where dataobjectname is a character sting identifyingthe EATto be merged. The EAT must exist in all of

the merged substructure libraries. (Default value: None) NOT OPERATIONAL.

8.2.4.8 The NAT Subcommand

The NAT subcommand identifiesadditional nodal attrl_e tables which are to be merged for the listed

substructures.

Subcommand syntax:

J NAT = daLa_object_name J

where data_object_name is a character string identifying the NAT to be merged. The NAT must exist in all of
the merged substructure libraries. (Default value: None) NOT OPERATIONAL.

8.2.4.9 The SVT Subcommand

The SV'I" subcommand identifies additional system vector tables which are to be merged for the listed
substructures.

Subcommand syntax:

I

SVT ,, data___name J

where data_object_name is a character string identifyingthe sv'r to be merged. The SVT must exist in all of

the merged substructure libraries. (Default value: None) NOT OPERATIONAL.

8.2.5. The POST_PROCESS Command

This command is used to post-processthe master model. It splits the master model into its component
substructures once the solution has been obtained. This splittingprocess is typically done to facilitate the

recovery of stresses for the individualsubstructures. The inputto the POSTPROCESS command is a listof

substructures to be split from the master model (for example, POSC._PROCESS 1,3,4 implies that the
displacement results from substructures 1, 3, and 4 are to be split from the master model and placed in the

substructure libraries). The POST_PROCESS command requires that the substructures be identified using
the same identifiers used during the DEFINE SUBSTRUCTURES command (e.g., the substructure identified

as substructure 2 when defined will be post-processedas substructure 2). In fact, it is currently required that
the DEFINE SUBSTRUCTURES command be reissued. A template for execution of the POST_PROCESS

command follows:

8-8 A Generic Intmlace Element for COMET-AR

June22, 1994 8. MasterModelGeneralk_

POST_PROCESS i,j,k

LIBRARY

MESH

LOAD_SET

CONSTRAINT_CASE

LOAD_STEP

END_POST

STOP

= /d/

= mesh

= iset

= ncon

. istep

Each of the subcommands are discussed in detail in subsequent Sections.

8.2.5.1 The LIBRARY Subcommand

The LIBRARY subcommand identifiesthe logicaldevice index of the librarycontaining the Master Model.

Subcommand syntax:

I LIBRARY=Idi I

where/diis an integer identifyingthe logical device index number of the library. (Default value:z)

8.2.5.2 The MESH Subcommand

The MESH subcommand identifiesthe mesh number of the merged model.

Subcommand syntax:

I MESH = mesh

where mesh is an integer identifyingthe mesh number of the merged model. (Default value: o)

8.2.5.3 The LOAD_SET Subcommand

The LOAD_SET subcommand identifiesthe load set number for the merged model.

Subcommand syntax:

I LOAD_SET = load_set

where load_set is an integer identifyingthe load set number of the merged model. (Default value: 1)

AGenericInlerlaoeEiememforGOMET.AR 8-9

8. _ Model Gm_walion June 22. 1994

8.2.5.4 The CONSTRAINT_CASE Subcommand

The CONSTRAINT_CASE subcommand identifiesthe constraint case number for the merged model.

Subcommand syntax: ..

l CONSTRAINT_CASE=constraint_case J

where coUnt_case is an integer identifyingthe constraintcase for the merged model. (Default value:l)

8.2.5.5 The LOAD.STEP Subcommand

The LOAD_STEP subcommand ident_ms the output load step number for the merged model.

Subcommand syntax:

L LOAD_STEP = load_step

where load_step is an integer identifying the load step number for the merged model. For linear analyses,
/oad_step should be set to zero. (Default value: 0)

8.2.5.6 The END_POST Subcommand

The END_POST subcommand signals the end of processing for the POST_PROCESS command. The
command is required input.

Subcommand syntax:

I END_POST I

8-10 A Generic Inlm'bu:e Bement fix COMET.AR

June 22, 1g@4 8. Master Model Generation

8.2.6. Database Input/Output

8.2.6.1 Input Data,sets

Several datasets are required by MSTR during the merge process; others are optional and will be

merged if they are present in one or more of the substructures (e.g., nodal forces). Table 8.3 lists those

datasets required for both the merge and the post-processingoptions. Datasets which are optional (i.e., not

required) are indicated with an asterisk on the Type (e.g., EAT* is an optional EAT object). NI datasets listed
appear in both the substructureand the interface element data libraries.The following definitions apply: mesh

is the mesh number; concase is the constraint case number; Idset is the load set number and E/Wame is the

finite or interface element name.

Table 8.3. Input Datasets Required by MSTR Processor

Function Datlmet Ducriptlon lype

MERGE SS CSM.SUMMARY...mesh Model summary CSM

POST-PROCESS

NODALCOORDINATE...mesh

NODALDOF..cormase.mesh

NODALEXT_FORCE./dset..mesh

NODALSPEC_DISP./dseL.mesh

NODALTRANSFORMATION...mesh

NODALTYPE...mesh

E/tName.DEFINITION...mesh

EItName.PARAMS...mesh

EItName.MATRIX...mesh

CSM.SUMMARY...mesh

NODALNIDS...mesh

NODALDISPLACEMENT./dset.concase.mesh

Nodal coordinates NCT

Constraints NOT

Applied nodal forces NVT"

Specified displacements NV'P

Nodal global-to-local transformations NTT

Nodetypes
Element definitions

Interface element parameters

Element stiffness matrices

Model summary

Original nodal identifiers

Solutionvector

NAT

EDT

EAT

EMT

CSM

NAT

NVT

A Generic Into Bement lot COMET-AR 8-11

8. Mmm'Moc_ GsnerulJon June 22. 1994

8.2.6.2 Output Data,sets

Several datasets are created by MSTR dunng the merge process; some of these are considered optional

and will be created only if they are pcesent in one or more of the substructures (e.g., nodal forces). Table 8.4

lists those data.sets which are created either always or optionally for both the merge and the post-processing

options. The datasets listed as active for the merge process will be written to the master model library; the

post-processing datasets will be written to the individual substructure objects. Datasets which are optional

(i.e., not requk_d) are indicated with an asterisk on the Type (e.g., EAT" is an optional EAT object). The fol-

lowing definitions apply: mesh is the mesh nunter; concase is the constraint case number; idset is the ioad

set number and E/Wame is the finite or imrface element name.

Table 8.4. Output Detuets Created/Modified by the MSTR Processor

Function Detaut Description

MERGE SS CSM.SUMMARY...mesh Model summary

POST-PROCESS

NODALCOORDINATE...mesh

NODAL DOF..ooncse.mesh

NODAL EXT FORCF../dset..mesh

NODALNIDS./dNL.muh

NODALSPEC_DISPJdset. corcase.mesh

NODALTRANSFORMATION ...mesh

NODALTYPE...mesh

E/tName.D EFIN ITION...mesh

E/Wame.MATRIX...mesh

NODAL DISPLAC EMENT./dset.concase.mesh

Nodal coordinates

ConstrakCs

App4led nodal forces

Original node labels (numbers)

spac_ di_ments

Nodal giobal-to-iocal transformations

Node types

Element definitions

Element stiffness matrices

Solution vector

Type

CSM

NCT

NDT

NVT"

NAT

NVT"

NTT

NAT

EDT

EMT

Nv'r

8.2.7. Processor Limitations

Along with the limites listed in Section 1.5, them are currently limits on many of the problem parameters

which may be changed by adjusting internal parameter statements. If adjustments on these limits are

required, the COMET-AR maintenance team should be consulted. The current limits are listed in Table 8.5.

Table 8.5. Current Limits on the Master Model Generation

Parameter

Maximum number of degrees of freedom per node (maxDoF)

Value

6

Maximum total number of nodes (in the master model)

Maximum total number of pseudo-nodes model-wide (maxnPn) 1000

Maximum total number of alpha-nodes model-wide (maxnAn) 2000

Maximum total number of nodes per substructure 20000

Maximum number of finite element types 10

Maximum number of element types (including interface elements) 100

Maximum number of substructures 5

5O000

8-12 A GenericIrlmrlaoeElementlot COMET-AR

June 22. 1994 8. Mulmr Model _

8.2.8. Processor Error Messages

The MSTR processor performs error checking each time a data object is manipulated. The processor

also checks certain maximum values to ensure that they are withinthe limits set out in Table 8.5. Additionally,
error messages are printed if user input is incorrect; in this case, the user will typically be prompted for the

correct input and given the opportunityto re-enter the data.

8.2.9. Examples and Usage Guidelines

8.2.9.1 Example 1: An Example of Merging two Rnite Element Substructures with an
Interface Element Substructure

The following example runstream combines the finite element models labeled as substructures 1 and 2
and the interface element substructurelabeled as substructure3and creates a new model which is written to

library 4 with the file name masm.r.modei. This new master model carries the mesh identifier of 0, a load set

number of 1, and a constraint case of 1.

Run MSTR

DEFINE SUBSTRUCTURES

SUBSTRUCTURE 1 /FE

LIBRARY = 1

MESH = 0

LOAD_SET = 1

CONSTRAINTCASE = 1

LOAD_STEP = 0

SUBSTRUCTURE 2 /FE

LIBRARY = 2

MESH = 0

LOAD_SET -- 2

CONSTRAINT_CASE = 1

LOAD_STEP = 0

SUBSTRUCTURE 3 / IE

LIBRARY = 4

MESH = 0

LOAD_SET = 1

CONSTRAINT_CASE = 1

LOAD_STEP = 0

END_DEFINE

MERGE SUBSTRUCTURES 1,2,4

LIBRARY = 3

FILE = 'master.model'

MESH = 0

LOADSET = 1

CONSTRAINT_CASE = 1

STOP

A Genedc Inlm Elente¢_ lot COk_-AR 8-13

8. Mum¢ Modll Genenllion June 22, 1994

8.2.9.2 Example 2: An Example of Post-processing the Master Model Into two Finite
Element end one Interface Element Substructures

The following example runstream takes the master model which resides in library 3 and splits off results
for finite element substructures labeled as substructures 1 and 2 and forthe interface element substructure,

labeled as substructure3.

Run MSTR

DEFINE SUBSTRUCTURES

SUBSTRUCTURE 1 /FE

LIBRARY = 1

MESH = 0

LOAD SET = 1

CONSTRAINTCASE = 1

LOAD_STEP = 0

SUBSTRUCTURE 2 /FE

LIBRARY = 2"

MESH = 0

LOAD_SET = 2

CONSTRAINT_CASE = 1

LOAD_STEP = 0

SUBSTRUCTURE 3 / IE

LIBRARY = 4

MESH = 0

LOAD_SET : 1

CONSTRAINT_CASE = 1

LOAD_STEP = 0

END_DEFINE

POST PROCESS 1,2,4

LIBRARY = 3

MESH = 0

LOAD_SET = 1

CONSTRAINTCASE = 1

END_POST = 1

STOP

8.2.10. References

None.

8-14 A Generic Inteda_ Element lot COMET-AR

June 22. 1994 V. Developer Intlrfaoe

Part V.

DEVELOPER INTERFACE

A Generic Inmrlace Element Ior COMET-AR V-1

V. [)ove¢o_perlnmd_ June _, I_

THIS PAGE INTENTIONALLY BLANK

V-2 A Generic Intm'tace Element Ior OOtQIET-AR

June22. 1994 9. Dmm_3perInmdaoe

1l Developer Interface

9.1. Overview

The interface element processor, El, is composed of three parts:the generic El processor shell, the user-

written El processor cover, and the user-written El processor kernel. The generic shell manages all
interaction between the user and the individualEl processor (using CLIP routines described in Ref. 9.3-1) as

well as all interaction between the database and the individualEl processor (using HDB routines described in

Ref. 9.3-2). The developer of new interface elements will need to access and modify only two files: the

el*_.cover.ams file and theel *_kemei.ams file. This Chaptercontains a description ofthe generic shell and

the requirements for the cover routines.The Chapter isorganized as follows:

Section

2

3

4

5

Table 9.1. Outline of Cha

Subject

New qSymbois

)ter 9: Developer Interface

Function

Definitionsof new qSymbols.

Descriptionof the uniform user and database
El_shell interface for all interface element processors.

El cover Description of the software that translates
- between the shell and the kemel routines.

makefile Example makefile.

AGenericIntedacmBementforCOMET-AR 9-I

PRECEDING PAGE BLANK NOT FILMED

9. Devaloper Inm"laoe June 22, 1994

THIS PAGE INTENTIONALLY BLANK

9-2 A Generic Ir_rlace Elemem for COMET-AR

June22, 1994 9. Developerlnterlaoe

9.2. New qSymbols

9.2.1. General Description

A qSymbol (Ref. 9.2-1) is simply a FORTRAN integer parameter which is usually used in place of a char-

acter string.There are currently several hundred of these parameters used in COMET-AR. During the imple-

mentation of the interface element, it was found that new qSymbols were needed. Ten new parameters were
added to the qsymbol.lnc file using the method outlined in Ref. 9.2-1. These new parameters are listed in
Table 9.2.

Parameter Value

qAIpha

qBE

qD

281

380

385

qFE 379

qFIn¢l 376

Table 9.2. New qSymbol Parameters

Usage

Denotes alpha-nodes (this is not a new qsymbol; this is an additional, new,
meaning assigned to the existingparameter).

Identifiesboundary element substructures

Denotes pseudo-nodes

Identifiesfinite element substructures

Signalsthe need to locate (find) finite element nodes along a specified path

qForm 378 Signalsthe need to form a path through the pseudo-nodes

qGet 377 Signals the need to form a path throughspecified finite element nodes

qlE 382 Identifiesan interface element substructure

386 Identifies the post-processingfunctionof processor MSTR

381

qPoet

qRR Identifies RayleigWRitz substructures

9.2.2. References

9.2-1 Stanley, G. M. and Swenson, L., HDB Object-Oriented Database Utilities for COMET-AR, NASA CSM
Contract Report, August, 1992.

A Genedc Inlerlaoe Element lot COMET-AR

PRECEDING PAGE BLANK NOT FILIVIED

9-3

9. Deve¢oper Inmrfa_ June 22. 1994

THIS PAGE INTENTIONALLY BLANK

9-4 A Generic Imedaoe Element lot COMET-AR

June 22, 1994 9. Developer Intsrlace

9.3. The Generic Interface Element Processor Shell

9.3.1. General Description

The developer of a new interlace element must create his or her own kemel subroutines and must

generate a corresponding el*_coverJmsfile. This cover file translates between the user kemel routines and

the El shell which performs all of the database manipulation. The following sections provide a summary of

each subroutine in the El shell file, e/_.sheliJlms , includingits function, argument list (if any), include files

used, and special requirements.

Element names are assigned by the element developer. The shell however assumes that each interface
element defined by the user is a different element type (since each element can, and usually does, have a

unique number of nodes). The convention adopted by the El1 processor is that the element name is

composed of the element processor name, the element type name, and the element number all separated by

underscores (e.g., EII_HybV_I is the name of element 1, EII_HybV_5 is the name of element 5). This
element name is used to name element table datasets. It is strongly recommended that developers of new

elements adopt the same naming convention; this will provide uniformityand minimize confusion for users.

9.3.2. Shell Include Files

The ei__shellJms file uses a number of include files which are also available for use by the element

developer. These include files generally contain common blocks,parameter definitions,and type declarations

for variables used throughout the processor. One include file is used by virtually all subroutines, qsym-
Iool.lnc. This file is described in detail in the HDB Manual (Ref. 9.3-2) and the reader is referred to that docu-

ment for specifics on the use of qsymbols (integer parameters which all begin with the letter *q" and which
generally replace character data). Several new qSymbols have been added and are described in Section 9.2.

Each of the remaining include files is summarized in the Table 9.3 and listed in subsequent Sections. Vari-
ables and parameters are also defined.

File

eiOIim.inc

Table 9.3. Summery of Include Files

Descrlptlon

Sets limitson problem parameters (e.g., maximum
number of nodes, number of substructures)

Section

Pointer array parameter and common blocks

9.3.2.1

elOcmn.inc Common block data 9.3.2.2

elOcom.lnc Common block data 9.3.2.3

eiOptr.inc 9.3.2.4

A Gene_ Inledaoe Element fo¢COMET-AR

PRECEDING PAGE BLANK NOT FIL_
9-5

9. Deve¢operlnwllm(m _22,1994

9.3.2.1 The eiOIimJnc Include File

The file elOIim.lnc contains parameter definitions which are used throughout the processor. These

parameters set the maximum permissible values for various items such as number of nodes, number of
degrees of freedom per node, and number of interface elements. These maximums are used to dimension

arrays in other include files as well as insubroutines.A listingof the includefile is provided as Table 9.4.

c_beg

c_end

Table 9A. Lletlno of the elOIimJnc Include File

EIOLIM. INC

integer MAXDOF : Maximum number of degrees of freedom per node

parameter MAXDOF = 6)

integer MAXNIP : Maximum number of integration points per element

_rameter MAXNIP = 144

integer MaxXYZ : Maximum

parameter MaxXYZ = 15

integer MaxPpE ! Maximum

parameter MaxPpE = 40

integer MaxAIT : Maximum

parameter MaxAIT = 60

integer MaxSpE ! Maximum

)aramet er MaxSpE = 4

Integer MaxNpS ! Maximum

)aramet er MaxNpS = 50

integer MaxEpS : Maximum number of elements per substructure (along interface)

parameter MaxEpS- = MaxNpS/2)

integer MaxNEN , Maximum number of nodes per interface element

parameter MaxNEN = MaxSpESMaxNpS+MaxAIT+MaxPpE)

integer MaxTnS : Maximum total number of nodes per substructure

)arameter MaxTnS = 20000)

integer MaxTMp ' Maximum number of finite element types

parameter MaxTyp = i0)

integer MaxFEo ! Maximum order of finite elements

marameter MaxFEo = 3)

integer MaxNG ! Maximum number of interface geometry nodes

parameter MaxNG = MaxNpSVMaxSpE)

integer MaxPAR : Maximum number of miscellaneous element parameters

)arameter MaxPAR = 3*MaxSpE+10)

Integer MaxNEE ! Maximum number of element equations

parameter MaxNEE = MaxDOFIMaxNEN)

integer MaxNUT ! Maximum number of items in the upper triangle

parameter MaxNUT = MaxNEE_(MaxNEE+I)/2)

integer MaxEdg ! Maximum number of element edges per finite element

parameter MaxEdg = 16)

integer Max/VIE ! Maximum number of interface elements

parameter MaxNIE = 30)

integer MaxInd ! Maximum number of independent dofs for mpcs

_rameter MaxInd = 20)

integer MaxMPC ! Maximum number of mpcs along interface

parameter MaxMPC = 6)

EIOLIM. inc

number of input geometry points

number of pseudo-nodes per interface element

number of alpha nodes per interface element

number of substructures per element

number of nodes per substructure (along the interface)

9-6 A Generic Inlmtace Element for COMET-AR

June 22, 1994 9. Developer Inlerlace

9.3.2.2 The elOcmnJnc Include File

The file elOcmn.inc contains several common blocks and type declarations. A summary of the common

blocks and a general description of their contents follows inTable 9.5. A complete listing of the include file is
provided as Table 9.6.

Common Block

EIOCIB

EIOCFB

EIOCCB

EI01ED

EIOCON

EIOEID

EIOEIC

EIOEII

Table 9.5. Summary of Common Blocks In elOcmn.inc

DataType
Integer

Single or Double

Character

Integer

Integer

Singleor Double

Character

Integer

Contents

Contains integerdata for the substructures

Contains floating point data for both the substructures
and the interface elements

Contains character data for both the substructures and
the interface elements

Contains integerdata forthe interface elements

Contains integerconstraint data

Contains floating point constraint data for both pseudo-
and alpha-nodes

Contains character representation of constraints

Contains integer constraint data

Table 9.6. Listing of the eiOcmn.inc Include File

c_beg ei0cmn.inc

integer Gcurv, Dspline, NumElty, nss, Gspline

integer ssid, ssldi, ssmesh, ssnn, ssnode, ssns, ssdofs,

1 sscons, sstelt, ssnelt, ssNet,ssDofn, ssNdofn, ssend,

2 ssCSM, ssNen, ssMdofn, ssFE, ssBE, ssIE,

3 ssRR, ssNnode, ssINelt, sstn, nFilter,

4 Filterx, Filtery, Filterz, ssnact, ssActv, ssfid

common /EIOCIB/

1

2

3

4

5

6

7

8

9

S

1

2

3

4

5

Gcurv, Dspline, NumElty, nss, Gspline,

ssid(MaxSpE), ssldi(MaxSpE), ssmesh(MaxSpE),

ssnn(MaxSpE), ssnode(MaxNpS,MaxSpE),

ssns(MaxXYZ), ssdofs(MaxDF,MaxNpS,MaxSpE),

sscons(MaxSpE), sstelt (MaxTyp,MaxNpS,MaxSpE),

ssnelt (MaxNpS,MaxSpE), ssNet (MaxSpE),

ssDofn (MaxDOF,MaxSpE), ssNdofn (MaxSpE),

ss end (2,MaxSpE),

ssCSM(MaxSpE), ssNen(MaxTyp,MaxSpE),

ssMdofn(MaxSpE),ssFE(MaxSpE), ssBE (MaxSpE),

ssIE(MaxSpE), ssRR(MaxSpE), ssNnode(MaxSpE),

ssINelt(MaxTyp,MaxSpE),

sstn(MaxSpE),

nFilter(2,MaxSpE), Filterx, Filtery, Filterz,

ssActv(MaxTnS,MaxSpE), ssnAct (MaxSpE),

ssfid

Definitions:

ssid: substructure id's

ssldi: substructure libraries

ssmesh: substructure mesh number

ssnn: number of interface nodes per substructure

ssnode: list of interface nodes for each substructure

A Generk: Into Etement for COMET-AR 9-7

9. _ In_la_ June 22. 1994

c ssns:

c eedofs:

c sscons:

c sstelt:

c ssnelt:

c ssNet:

c ssDofn:

c ssNdofn:

c ssCSM:

c ssNen:

c ssFE:

c ssBE:

c ssIE:

c ssRR:

c

c

c

c

c

c

c

C=IF DOUBLE

double precision

Table 9.6. Listing of the eiOcmn,inc Include File(Continued)

number of interface geometry nodes for each substructure

list of active dofs for each node for each substructure

substructure constraint set number

list of element types connected to each interface node

number of element types connected to each interface node

number of element types in each substructure

List of active nodal DOF types substructure wide

Number of active nodal DOF types substructure wide

id's for the substructure CSM object_

Number of nodes per finite element type for each substructure

Flags (when = qFE) denoting finite element substructure

Flags (when = qBE) denoting boundary element substructure

Flags (when = qIE) denoting other existing interface elements

Flags (when - qRR) denoting Rayleigh-Ritz substructure

ssNnode: Number of nodes in the entire substructure

ssINelt: Number of element of each element type in each substructure

sstn: Total number of nodes per substructure.

Filter*: Flags to indicate that the filters are on

ssActv: List of active nodes for the "Find" operation of path routine

ssnAct: Number of active nodes for the "Find" operation

ssfid: ID of the "fine" substructure (with most nodes along interface)

xFilter, yFilter,

ssforc, Gxyz,

tangei, tangss,

tranei, transs,

C=ELSE

real

C=ENDIF

1

2

3

4

C

common /EIOCFB/

1

2

3

4

5

6

7

9

$

1

2

3

4

5

6

7

xFilter:

yFilter:

zFilter:

xyzss:

coordss:

coordei:

Gxyz:

pathss:

pathei:

zFilter, xyzss, coordss, coordei,

pathss, pathei,ssxyz, scale,

zero, normsse, normssn, normei,

ssTdg, ssTgc, ssTcg, eiTdg, eiTgs

xFilter(2), yFilter(2),

zFilter(2), xyzss(3,MaxXYZ),

coordss(3,MaxNpS,MaxSpE),

coorde i (3, MaxPpE), ss forc (MaxDOF, MaxNpS, MaxSpE),

Gxyz (3 ,MaxNg), pathss (MaxNpS, MaxSpE),

pathei (MaxPpE),

ssxyz(3,MaxTns,MaxSpE), scale,

tangei(3,MaxPpE), tangss(3,MaxNpS,MaxSpE},

zero,

normsse(3,MaxTyp,MaxNpS,MaxSpE),

normssn(3,MaxNpS,MaxSpE),normei(3,MaxPpE),

tranei(3, MaxPpE), transs(3,MaxNpS,MaxSpE),

ssTdg(3,3,MaxNpS,MaxSpE),

ssTgc(3,3,MaxNpS,MaxSpE),

ssTcg(3,3,MaxNpS,MaxSpE),

eiTdg(3,3,MaxPpE,MaxSpE),

eiTgs(3,3,MaxPpE)

bounds on x-coordinates when interface nodes must be found

bounds on y-coordinates when interface nodes must be found

bounds on z-coordinates when interface nodes must be found

coordinates of points (not nodes) used to define path

coordinates along the interface for the interface nodes

coordinates along the interface for the pseudo-nodes.

concatinated geometry coordinates along interface

coordinates along the path for the interface nodes

coordinates along the path for the pseudo-nodes.

H A Generic Inlmlace Element Ira"COMET-AR

June 22, 1994 9. De.loper Intmtaoe

C

C

C

C

C

C

C

C

c

C

C

C

C

C

c

ssxyz :

scale :

tangei :

tangss :

ssTcg :

zero :

normsse :

norms sn:

norme i :

tranei :

transs:

ssTdg :

eiTdg :

eiTgs :

,Table 9.6. Listing of the elOcmn.lnc Include File{Continued)

xyz coordinates for all nodes in each substructure.

scale factor for interface element.

tangents (along the path s) for the pseudo-nodes.

tangents (along the path s) for finite element nodes.

nodal global-to-computational transformations

zero value

element nodal normals for each finite element along interface

average nodal normal based on only f.e.s along the interface

pseudo-node normal

transverse surface tangent for pseudo-nodes

transverse surface tangent for finite element nodes

nodal global-to-edge frame transformation

pseudo-nodal global-to-edge frame transformations

pseudo-nodal interface element path-to-global transformation

character'40 EltNam, EltPro, EltTyp

character*40 sscElt

common /EIOCCB/ EltNam, EltPro, EItTyp, sscElt(MaxTyp,MaxSpE)

EltNam:

EltPro:

EltTyp:

sscElt:

integer

integer

integer

element name for interface element; EltPro_EltTyp.

element processor name for interface element

element type

element names of substructure elements.

Npn, pnid, nAlpha, nAlphaT, alid

ieNen, ieDofn, ieNdofn, ieConn, ieNodSS, anodes

DrilDof, DrilSup

common /EIOIED/

2

3

4

5

6

7

c

c anodes:

C Npn:

c pnid:

c nAlpha:

c nAlphaT:

c alid:

c ieNen:

c

c ieDofn:

c ieNdofn:

c ieConn:

c ieNodSS:

c nApE:

c Net:

c DrilDof:

c DrilSup:

c

c

c

aNodes(MaxSpE), Npn,

pnid(MaxPpE), nAlpha{MaxSpE),

nAlphaT, alid(MaxAIT),

ieNen, ieNdofn, ieDofn(MaxDOF),

ieConn[MaxNEN), ieNodSS(MaxNEN),

nApE(MaxSpE), Net,

DrilDof, DrilSup

number of alpha-type nodes per substructure

Total number of interface element pseudo-nodes

pseudo-node "node" numbers

number of alpha dofs for each SS of each interface element

Total number of alphas

"node" number for the alphas (placed Ndofn per "node')

Total number of interface element "nodes" - Npn ÷ nAlphaT ÷

number of nodes along each substructure

Active dofs for the interface element

Number of active dofs for the interface element

Interface element connectivity

Substructure id's corresponding to nodes in element connectivity

number of alphas per finite element

Number of element types

Drilling freedom for interface element

Drilling freedom suppression flag

/-/-/-/-/-/-/-/- CONSTRAINT COMMON BLOCKS SS and EI -/-/-/-/-/-/-/-/

integer ssState, nssmpc, issmpc

A _ _mHam _ kx OOIVlET-AR g-9

9. Dewloper Intmlace June 22. 1994

c

c

c

c

C=IF DOUBLE

double precision

C=ELSE

real

C=ENDIF

c

c

c

c

c

c

c

c

c_end

Table 9.6. Listing of the eiOcmn.inc Include File{Continued)

common /EIOCON/ ssState(MaxDof,MaxSpE),

1 nssmpc(MaxSpE), issmpc(MaxDof,MaxMPC,MaxSpE)

ssState: State attributes for substructure nodes

nssmpc: number of mpcs for alpha-nodes

issmpc: dependent dofs for alpha-nodes

4 eivals,ssvals,feimpc,fssmpc

common /EIOEID/ eivals(MaxDoF), ssvals(MaxDoF,MaxSpE),

1 feimpc(MaxInd,MaxMPC),

2 fssmpc(MaxInd,MaxMPC,MaxSpE)

eivals: values (zero and nonzero) for pseudo-node constraints

ssvals: values (zero and nonzero) for alpha-node constraints

feimpc: values of coefficients for pseudo-node mpcs

fssmpc: values of coefficients for alpha-node mpcs

character*6 ceimpc, cssmpc

common /EIOEIC/ ceimpc(MaxInd,MaxMPC),

1 cssmpc (MaxInd,MaxMPC,MaxSpE)

ceimpc: names of independent dofs for pseudo-node mpcs

cssmpc: names of independent dofs for alpha-node mpcs

integer eiState, neimpc, ieimpc

common /EIOEII/ eiState(MaxDoF), neimpc, ieimpc(MaxDoF,MaxMPC)

eiState: Constraint flags for pseudo-nodes

neimpc: Number of MPC's defined for pseudo-nodes.

ieimpc: Dependent freedoms for pseudo-node mpcs

eiOcmn.inc

9-10 A Gerlerb Inlerfaoe Element for COMET-AR

June 22, 1994 9. Developer Interface

9.3.2.3 The eiOcom.lnc Include File

The file eiOcom.lnc contains a common block of pointers for the data objects used by the El processor

(EIOCBC), a common block which storesthe processor reset values and data used by the low level database

routines (EIOCBI), and a common block which stores the data object names (EIOCBA). A complete listing of
the include file is provided as Table 9.7. This include file is based on a file used by the ES processor,
es0com./nc.

Table 9.7. Usting of the eiOcom.inc Include File

c_beg ei0com.inc

C ..

integer ctls , defs , dofs , nodes

common /EIOCBC/ ctls(Mctls), defs(Mdefs), dofs(MaxDof,MaxNen),

$ nodes(MaxNen)

cctls: array which contains flags which control the processor functions

c defs: array containing element definition (e.g., defs(pdNEN) = the

c number of nodes for the current element

c dofs: array containing an active dof table for the current element

c nodes: array containing node numbers for the current element

C ..

integer NumDO

parameter (NumDO = 25)

integer pCSM , pDIS , pEDT , pEFT , pEGT , pEIT

integer pELT , pFRC , pMAS , pNCT , pNTT , pROT

integer pSTF , pSTE , pSTS , pSTN , pGCP , pTEM

integer pAUX , pATT , pNVT

integer pERT , pNDT , pEAT , pNAT

parameter

parameter

parameter

parameter

parameter

c NumDO: Number

c pCSM:

c pDIS: Pointer

c pEDT: Pointer

c pEFT: Pointer

c pEGT: Pointer

c pEIT: Pointer

c pELT: Pointer

c pFRC: Pointer

c pMAS: Pointer

c pNCT: Pointer

c pNTT: Pointer

c pROT: Pointer

c pSTF: Pointer

c pSTE: Pointer

c pSTS: Pointer

c pSTN: Pointer

c pGCP: Pointer

c pAUX: Pointer

c pATT: Pointer

c pNVT: Pointer

c pERT: Pointer

c pNDT: Pointer

(pCSM = I, pDIS = 2, pEDT = 3, pEFT = 4, pEGT = 5)

(pEIT = 6, pELT = 7, pFRC = 8, pMAS = 9, pNCT =10)

(pNTT =ii, pROT =12, pSTF =13, pSTE =14, pSTS =15)

(pSTN =16, pGCP =17, pTEM =18, pAUX =19, pATT =20)

(pERT =21, pNDT =22, pNVT =23, pEAT =24, pNAT =25)

of different data object types

Pointer to CSM data object

to nodal displacement (NVT) data object

to EDT (element definition) data object

to EFT (element fabrication) data object

to EGT (element geometry) data object

to EIT (element interpolation) data object

to ELT (element line) data object

to FRC nodal force (NVT) data object

to nodal lumped mass (NVT) data object

to NCT (nodal coordinate) data object

to NTT (nodal transformation) data object

to nodal rotation (NAT) data object

to ELT (element line) data object

to FRC nodal force (NVT) data object

to nodal lumped mass (NVT) data object

to NCT (nodal coordinate) data object

to NTT (nodal transformation) data object

to auxiliary storage (EAT) data object

to additional attribute (EAT) data object

to NVT (nodal vector) data object

to ERT (element refinement) data object

to NDT (nodal definition) data object

A Generic Interbl_ Element lot COMET-AR 9-11

9 Devgloper Intoda_ June 22, 1994

Table 9.7. Listing of the eiOcom.lnc Include File

c pEAT: Pointer to EAT (element attribute) data object

c pNAT: Pointer to NAT (nodal attribute) data object

C ..

integer DBlen , reserv, Idi0 , step0 , mesh0, idset

integer id , idi , step , mesh , buf , coset

integer AUXtyp, AUXIoc, StrAit

c

common /EIOCBI/ DBlen, reserv, idi0, step0, mesh0, idset, coset,

$ id(NumDO), idi(NumDO), steD(NumDO), mesh(NumDO),

$ buf(NumD), AUXtyD, AUXIoc, AUXcyc, StrAit

c DBlen: Pointer to EAT (element attribute) data object

c reserv: Pointer to NAT (nodal attribute) data object

c idi0: user specified logical device index for output

c step0: user specified step id for output

c mesh0: user specified mesh id for output

c idset: user specified load set number

c coset: user specified constraint set number

c id: DB pointer identifier for each active, open data object

c idi: idi identifier for each active, open data object

c step: step identifier for each active, open data object

c mesh: mesh identifier for each active, open data object

c bur: buffer length for each active, open data object

c AUXtyp: data type for element auxiliary storage object

c AUXloc: location (e.g., qCent) for element auxiliary storage object

c StrAit: Type of data (stress, strain, strain energy) saved in EST

C ..

character*72 Name, NamDef

C

common /EIOCBA/ Name (NumDO), NamDef (NumDO)

c Name: Data object names

c NamDef: Default values for data object names

C ..

c_end ei0com.inc

9-12 A Generic Inmdace Element for COMET-AR

June 22. 1904 9. Developer Inlmrface

9.3.2.4 The elOptr.inc Include File

The elOptrJncfile contains pointers into two element definition arrays: otis and clefs (which are found in

the eiOcmn.inc file). The ctls array contains flagswhich define the individualelement implementation scope
(e.g., ctls(pcNLG) indicateswhether or not the element formulation is capable of handling geometric nonlin-

earity). The clefs array contains integer data which define the individualelement (e.g., defs(IxINen) is set to

the number of nodes per element). These arrays are passed from the shell to the element cover; the element
developer must fill them (as inthe example cover routines of Section 9.4). A complete listing of the include file

is provided as Table 9.8. Note that this include file is based on the include file used by the ES processor,

esOpa'Jnc. Some items have been deleted as unneeded in eiOptr.inc butthe definitions of the items remain-

ing are the same as the ES version of this file.

Table 9.8. Listing of the eiOptr.inc Include File

c

c Pointers for DEFS Array:

c

c_beg EIOPTR. INC

c

c Pointers for CTLS Array:

c ... c

integer pcCORO , pcNLG , pcNLM , pcNLL

parameter pcCORO = i, pcNLG = 2 , pcNLM = 3, pcNLL = 4)

integer pcTEMP

parameter pcTEMP = 22)

integer pcLLliv , pcSLliv , pcPLliv , pcBLliv

parameter pcLLliv= 23, pcSLliv= 24, pcPLliv= 25, pcBLliv=26)

integer pcPSTN , pcPSTS

)arameter pcPSTN = 27, pcPSTS = 28)

znteger pcSTNo , pcSTSo , pcSTEo

parameter pcSTNo = 29, pcSTSo = 30, pcSTEo = 31)

integer pcLDS , pcNORO

parameter pcLDS = 32, pcNORO = 33)

integer mCTLS

parameter mCTLS = 33)

...

pdOPT , pdNEN ,

pdOPT = 1, pdNEN = 2,

pdNDOF , pdC ,
pdNDOF = 5, pdC = 6,
pdDIM , pdCNS ,

pdDIM = 9, pdCNS =I0,

pdTWIS , pdPARS ,

pdTwIS =Z3, pdPARS =Z4,
pdESPD , pdTGE ,

pdESPD =17, pdTGE =18,

pdNLE , pdNSE ,

pdNLE =20, pdNSE =21,

pdP , pdCLASS ,

pdP =32, pdCLASS=33,

mDEFS

mDEFS =34)

integer

parameter

integer

)arameter

znteger

)arameter

integer

parameter

integer

parameter

integer

)arameter

Integer

_rameter

integer

parameter

pdCLAS

pdCLAS = 3
;x_STR
pdNSTR = 7
zxlZW..S
pdNEE =11

pdCENT
pdCENT =15
pdPROJ

pdPROJ =19)

pdNIP

pdNIP = 4)

pdSTOR

pdSTOR = 8)
pdSHAP
pdSHAP =12)

pdNOXO
pdNORO =16)

pdNNLT , pdNNST

pdNNLT =22 , pdNNST =23)

pdSHAPE

pdSHAPE=34)

c ...

c Legitimate Values of DEFS(pdCLAS):

c ...

integer idBEAM , idSHEL , idSOLI

parameter (idBEAM = 1, idSHEL = 2, idSOLI = 3)

c ...

c Legitimate Values of DEFS(pdSHAP):

c ...

integer idQUAD , idTRIA

parameter (idQUAD = I, idTRIA = 2)

c ...

c_end EIOPTR.INC

A Generic Interlaoe Eklment for COMET-AR 9-13

9. Developer Inlm'face June 22, 1994

9.3.3. Shell Subroutines

The e/o..shell.ams file is composed of a number of subroutines which each manage a different function

(e.g., subroutine E/Ores handles the processor resets). Table 9.9 provides a summary of the functions per-
formed by each subroutine. The command class (see Section 7.2.4 for a description of the options) for which
the subroutine is active is also listed.

Subroutine
Name

Table 9.9. Summary of ELshell Subroutines

Rle name

e/0.msc

Function

Main driver routine

Command
Class

E/O All

ElObeg e/o4_g.msc Initialize the processor All

EBchks o/0chks.msc Check available processor space All

ElOcm¢l e/ocmd.msc Process user inputcommands All

eiOcrl.msc Forms normal and tangent vectors in edge and inter- DEFINE
face reference frames

BOcsm e/Ocsm.msc Save the necessary data inthe CSM data object. DEFINE

E/Oriel e/Odef.msc Process the DEFINE command class DEFINE

F_/Odefe e/Odefe.msc Process the DEFINE ELEMENTS command DEFINE

ElOdeff elOdeff.msc Process the DEFINE FREEDOMS command DEFINE

E/Oriels e/Odefs.msc Defines the path coordinatesfor the interface element; DEFINE
constructs a path based on user inputdata

ElOedef elOedef.msc Determines the finite element types of the incoming DEFINE
substructures

ElOelt eiOelLmsc Saves element data inthe appropriateelement data DEFINE
objects.

BOend e/0end.msc Close the data objects/database before exiting All

ElOflnd eiOfind.msc Findthe finite elements connected to the nodes of DEFINE
each substructure

E/Ofrm e/Ofrm.msc Processthe FORM command class FORM

ElOIog eiOIog.msc Set logical flags for execution control All

E/Omtx e/Omtx.msc Processthe element matrixgeneration FORM

E/onod eiOnodJTmC Saves nodal data inthe appropriate nodal data DEFINE
objects.

FJOms eiOresJnsc Process RESET command class All

ElOset eiOset.msc Process individualRESET commands All

E/otran eiOtran.msc FORMForm transformation matrices based on normal and
tangents

9-14 A Generic Interlaoe Element for COMET-AR

June 22, 1994 9. Developer Interface

Each command class has its own execution flow through the processor. The three currently available

command classes and their individual execution flows are shown in Figures 9.1-9.3. Note that in these

Figures, subroutines listed as "AuxiliarySubroutines"are used to process user input, place and retrieve data

to and from the database, set up arrays, define path variables, and perform other such auxiliary functions.
Subroutines labeled as CSM., NCT., N'l'l'., etc. are HDB utility routines.The reader is referred to Ref. 9.3-2

for more information about these subroutines.

..n I

, !El0 B0beg, EI0cmd, EI01og,
BOut, EI0rN, F.lOimd

E_

Figure 9.1. Execution Flow for the RESET Command Class

Auxiliary Subroutines
CSM*,NCT*, NDT*,NVI"*,
ElOedef,BlOIInd,EI0deb,

EI0chlw,B0clm, B0elt,EI0nod,
BOc_rt

I
I
I

main i

B0def I

EI0deff /,.rxiliary Subroutlnes
CSM*, NTT*, NDT*

El kernel

Figure 9.2. Execution Flow for the DEFINE Command Class

A Generic Intmla(:e Element for COMET-AR 9-15

9. Demloper Inmtace June22. 1994

Auxiliary Subroutines
CSM*, NTT*, NDT*, NAT*,
EDT', EAT*, ERT*, BIT*,

El01nm

I
I

I
I

maln

, fEl0 BObeg, BOcmd, B0k_,
Bl0_t, El0r_, B0end

V

EKH_]

(El cover)

El kernel I

Figure 9.3. Execution Flow for the FORM Command Class

In the following subsections, additional information about each of the subroutines listed in Table 9.9 is

provided. The subroutines are described in alphabetical order. The reader is referred to the previous Figures

to visualize the actual order of execution. For descriptions of the subroutines listed as utilities, the reader is

referred to Refs. 9.3-1 through 9.3-4. Additional subroutines which may be thought of as utilities are located in

the file e/Out/tams. These utility subroutines are generally called by the B0* subroutines listed in Figures

9.1-9.3 as Auxiliary Subroutines.

9.3.3.1 Subroutine EiO

Subroutine E/0 is the primary driver routine for the processor. It processes the user input and directs the

processor execution. Subroutine EIO uses the include files and calls the subroutines listed in Table 9.10.

Table 9.10. Include Files and Subroutines Used by Subroutine EiO

Include Files

e/Ocom.inc

e/Oflg.lnc
elOIim.lnc

e/Optr.lnc

qsymbol.lnc

Subordinate

Subroutines

EI_, ElOcmd, ElOIog,
t, BOres, ElOdef,

ElOfrm, e/Oend

Utility
Subroutines

CmdPm, Err, CIIIA TCH

9-16 A _ ImadaceElementforCOMET-AR

Jtrle 22, 1994 9. Developer Inlsdace

9.3.3.2 Subroutine ElObeg

Subroutine E/Obeg initializes the El processor and the processor resets (Le., the variables Idi, step,

mesh, zero, Idset, Idfac). It also sets default dataset names.

Table 9.11. Include Files and Subroutines Used by Subroutine ElObeg

Subordinate Utility
Include Files

e/Ocmn.lnc
e/Ocom.lnc
elOflg.lnc
elOIim.inc
elOptr.inc

qsymboLInc

Subroutines

None

Subroutines

BegPro, GSCLRI,
UpCue

9.3.3.3 Subroutine ElOchks

Subroutine F./Ochk_verifies that the size limits for the El processor are not violated. These size limits

include limits on the number of nodes per element (currently set to 300) and the number of degrees of free-

dom per node (currently set to 6). The includefiles and subroutines used by E/Ochks are listed in Table 9.12.

Table 9.12. Include Flies and Subroutines Used by Subroutine ElOchks

Include Files

eiOIIm.inc
eiOptr.lnc

qsymboLinc

Subordinate
Subroutines

None

Utility
Subroutines

ERR

9.3.3.4 Subroutine ElOcmd

Subroutine E/Ocmd parses the command input line for the El processor. The include

subroutines used by E/0cmd are listed in Table 9.13

Table 9.13. Include Files and Subroutines Used by Subroutine ElOcrnd

Subordinate UtilityInclude Files Subroutines Subroutines

None None CCL VAL, CLOADQ

files and

A Generic inlerlace Element tot GOMET-AR 9-17

9. Dead:perInmtace June22, 1994

9.3.3.5 Subroutine ElOcrf

Subroutine ElOcrf forms computational reference frames (in the form of norma_, path and surface tan-

gents) along the interface.The include files and subroutines used by E/0cff are listed in Table 9.14.

Table 9.14. Include Files and Subroutines Used by Subroutine E/0crf

Include Files

e/0cmn.lnc

eiOUmJnc

qsymbol.lnc

Subordinate
Subroutines

None

Utility
Subroutines

GSCROS, GSNORM,
GSDOT, ERR

9.3.3.6 Subroutine BOcsm

Subroutine E/0csm saves the interface element general summary and element summan/attributes inthe

CSM data object. The include files and subroutinesused by BOcsm are listed in Table 9.15.

Table 9.15. Include Flles and Subroutines Used by Subroutine BOcsm

Include Flies

e/0cmn.lnc
e/0com.inc
eiOIimJnc
elOptr.lnc

qsymbol.inc

Subordinate
Subroutines

None

Ulllily
SubrouUnes

CSM* , ERR

9.3.3.7 Subroutine ElOdef

Subroutine E/Odef processes the DEFINE command class. This class is currently limitedto the DEFINE

ELEMENTS and DEFINE FREEDOMS commands. The include files and subroutines used by ElOdef are
listed in Table 9.16.

Table 9.16. Include Files and Subroutines Used by Subroutine EI0def

Include Files

eiOcom.lnc
eiOIim.inc
elOptr.lnc

qsyml_l.lnc

Subordinate
Subroutines

ElOdefe, ElOdeff

Utility
Subroutines

ERR

9-18 A GenedcIrlledaceElementlotCOMET-AR

June 22. 1994 9. Dew)loper Inwdace

9.3.3.8 Subroutine ElOdefe

Subroutine _fe processes all of the subcommands and qualifiers associatedwiththe DEFINE ELE-

MENTS command. It also performs or directs all database interactionrequired for this command. The include

files and subroutines used by BOdefe are listed in Table 9.17.

Table 9.17. Include Files and Subroutines Used by Subroutine EI0defe

Include Files

eiOcmn.lnc
eiOcom.inc
elOIim.inc
elOptr.lnc

qsymboLInc

Subordinate ..
Subroutines

BOedef, EIOD, ElOdefs,
ElOcllks, ElOcsm, BOelt,

ElOnorl

Utility
Subroutines

CLread, IclNr, Rclear,
CL VALI, CL VALf,

GMCODn, ERR, CSM, ,
NCT* , NDT, , NVT, ,

CLput, Cl2CL

9.3.3.9 Subroutine ElOdeff

Subroutine BOdeffprocesses the DEFINE ELEMENTS command. It also performsor directs all the data-
base interaction required for this command. The include files and subroutines used by ElOdeff are listed in
Table 9.18.

Table 9.18. Include Files and Subroutines Used by Subroutine BOdeff

Include Files

eiOcmn.lnc
eiOcom.lnc
elOIim.lnc

o ptr.lnc
qsymbol.lnc

Subordinate
Subroutines

None

Utility
Subroutines

GMCODn, CSM,, NTT, ,
NDT, , ERR

9.3.3.10 Subroutine ElOdefs

Subroutine ElOdefs defines the interface element path variables and coordinates. The include files and
subroutines used by F./0defs are listed in Table 9.19.

Table 9.19. Include Flies and Subroutines Used by Subroutine EiOdefs

Include Files

elOcmn.inc
eiOIim.lnc

qsymbol.lnc

Subordinate
Subroutines

El utilities

u.my
Subroutines

None

A Generic Inlz_ Element for COMET-AR 9-19

9. DeveloperInwr(sce June 22, 1994

9.3.3.11 Subroutine ElOedef

Subroutine ElOedef is a utility subroutine which determines the finite element types along the interface.

BOedef creates a table of adjacency information which lists the element types connected to each interface

node. The include files and subroutines used by B0edefam listed in Table 9.20.

Table 9.20. Include Files and Subroutines Used by Subroutine BOedef

Include Flies

eiOcrnn.lnc

eiOiimJnc

qsym_l.;nc

Subordinate ..
Subroutines

B _l/t/es

Utility
Subroutines

None

9.3.3.12 Subroutine ElOelt

Subroutine E/Den saves the element data in element data objects. This subroutine is only called dudng

the DEFINE ELEMENTS command execution. The include files and subroutines used by ElOelt are listed in

Table 9.21.

Table 9,21. Include Files and Subroutines Used by Subroutine E/0e/t

Include Flies

e/Ocmn.inc

e/Ocom.inc
elOiim.inc

eiOptr.inc

qsyml_Llnc

Subordinate

Subroutines

Norlo

UUlity
Subroutines

GMCODn, CSM, , EDT*,
EAT,

9.3.3.13 Subroutine ElOend

Subroutine FJOendends processing. The include files and subroutines used by ElOendare listed in Table

9.22.

Table 9.22. Include Files and Subroutines Used by Subroutine E/Oend

Include Flies

None

Subordinate Utility
Subroutines Subroutines

None EndPro

9-2o A GenericInledac:eElementfor COMET-AR

June22. 1994 9. DeveloperIrldaoe

9.3.3.14 Subroutine ElOfind

Subroutine ElOflndis a utility subroutine which creates a list of nodes and their coordinates for each sub-

structure. This list is used in the definition of the interface element path. E/0flnd processes any filters on the

coordinates and/or node numbers which may have been specified by the user. Only the nodes which pass

through the various coordinate and nodal filtem are listed. The include files and subroutines used by ElOflnd

are listed in Table 9.23.

Table 9.23. Include Files and Subroutines USed by Subroutine ElOflnd

include Files

eiOcmn.lnc
elOcom.inc

elOIim.lnc

eiOptr.inc

qsymbol.inc

Subordinate Ullllty
Subroutines

None

Subroutlmm

GMCODn, NDT, , NCT, ,
ERR

9.3.3.15 Subroutine ElOfrm

Subroutine B0frm is the driver routine for the element matrix formation. E/0frm both reads and writes the

required data from and to the database. The include files and subroutines used by E/Ofnn are listed in Table

9.24.

Table 9.24. Include Flies and Subroutines Used by Subroutine E/Ofrm

Include Files

eiOcmn.inc
eiOcom.inc

eiOIim.lnc

elOptr.lnc

qsymboLinc

Subordinate

Subroutines

E/0rmx

Utlllty
Subroutines

GMCODn, CSM, , EDT, ,
ERT,, EMT,, EAT,,

NDT, , NTT, , NAT*, ERR

9.3.3.16 Subroutine ElOIog

Subroutine EiOIog is a utility which constructs the logical commend flags from the Elcommand input line.

The include files and subroutines used by ElOIog are listed in Table 9.25.

Table 9.25. Include Files and Subroutines Used by Subroutine ElOiog

Include Files Subordinate Utility
Subroutines Subroutines

eiOflg.inc

eiOptr.inc
qsymboLinc

None ERR, GSCRI

A GenericInmda(mElemen_lot COMET-AR 9-21

9. Dewdoper Intmlace June 22, 1994

9.3.3.17 Subroutine ElOmtx

Subroutine BOm_ forms the appropriate element matrix. Currently the implementation is limited to for-

mation of the material stiffness matrix for linear elastic materials. The include files and subroutines used by
F./Omtx are listed in Table 9.26.

Table 9.26. Include Rles and Subroutines Used by Subroutine ElOmtx

Include Files

gOcm_lnc
eiOcom.lnc
elOIim.lnc
eiOptr.lnc

qsymboLInc

Subordinate
Subroutines

EIOKM (El cover routine)

UUilty
Subroutin_

GSCLRv, MID2

9.3.3.18 Subroutine BOnod

Subroutine E/onod saves the nodal data in the database. FJ0nod is called only during the execution of

the DERNE ELEMENTS command. The include files and subroutines used by B0nod are listed in Table
9.27.

Table 9.27. Include Files and Subroutines Uled by Subroutine ElOnod

Include Rles

eiOcmn.lnc
elOcom.lnc
eiOIIm.lnc
eiOptr.lnc

qsym_Unc

Subordinate
Subroutines

/_ne

Utility
Subroutines

GMCODn, CSM. , NDT. ,
NCT. , NAT., ERR

9.3.3.19 Subroutine BOres

Subroutine BOres processes the RESET commands. The include files and subroutines used by E/ores
are listed in Table 9.28.

Table 9.28. Include Flies and Subroutines Used by Subroutine E/Ores

Include Rles

eiOcom.inc
eiOIim.inc

elOptr.lnc
qsymboLInc

Subordinate
Subroutines

None

UUlity
Subroutines

CMA TCH, fCL VAL,
iCL VAI., cCL VAL

9-22 A Gefmf_ Intmlaoe Element lot COMEF-AR

June 22, 1994 9. De.loper Inmdaoe

9.3.3.20 Subroutine ElOset

Subroutine ElOset initializes the logical device indices and the data object names if RESET is NOTused

to perform these tasks. The includefiles and subroutinesused by BOset are listed in Table 9.29.

Table 9.29. Include Rles and Subroutines Used by Subroutine ElOset

Include Files

eiOcmn.inc
eiOcom.lnc
eiOIim.lnc

eiOptr.lnc
qsymlJoLinc

Subordinate
Subroutines

NoI_

Utility
Subroutines

GMBUDn, GMCODn

9.3.3.21 Subroutine EiOtran

Subroutine ElOtran forms the transformation matrices from the edge and interface to global reference

frames using the normals and tangents created and saved during the DEFINE ELEMENTS operation. The
include files and subroutines used by ElOtran are listed inTable 9.30.

Table 9.30. Include Files and Subroutines Used by Subroutine E/O/ran

Include Files

eiOcmn.inc
eiOIim.inc

qsymboLInc

Subordinate
Subroutines

None

Utility
Subroutines

None

9.3.4. References

9.3-1

9.3-2

9.3-3

9.3-4

Felippa, C. A., The Computational Structural Mechanics Testbed Architecture: Volume III - The
Interface, NASA CR 178386, December 1988.

Stanley, G. M. and Swenson, L, HDB Object-Oriented Database Utilities for COMET-AR, NASA CSM
Contract Report, August, 1992.

Felippa, C.A., The Computational S_Jctural Mechanics TestbedArchitecture: Volume IV- The Global-
Database Manager GAL-DBM, NASA CR 178387, January 1989.

Stanley, G.M., Hudbut, B., Levit, I., Stehlin, B., Loden, W., and Swenson, L., COMET-AR User's
Manual, LMSC Report #P032583, 1993.

A Generic Inlmlaoe Element br COMET-AR 9-23

9. DevQloper _ June 22, 1994

THIS PAGE INTENTIONALLY BLANK

_-_4 A Generic I_ Ellmlent for COMET-AR

June 22, 1894 9. Developer Interlaoe

9.4. The Generic Interface Element Processor Cover

9.4.1. General Description

The interlace element cover is a single file, called el*..cover.ams, which contains several subroutines

each of which the developer of new interface elements most customize. Each interface element developer

must create a new file, replacing the • in the file name with-a processor number (e.g., ell_cover.ares,

e,(20_cover.ams). The subroutines in the cover act as translators between the generic shell part of the pro-

cessor and the developer-written kernels. The calls from the shell to the cover routines are standard. The

developer must fill in calls to the appropriate kernel routinesusing the data passed through to the cover sub-
routines from the shell. If sufficientdata has not been passed down to a specIfic cover routine, the developer

should first look to the include files listed in the previous section. If incorporating the use of one or more

irckxJe files still does not provide all of the required information,a revision to the basic assumptions for the

shell may be required and the developer should contact COMET-AR maintenance personnel.

In the following section, a summary of the currently requiredcover subroutines is listed.The final section

contains an example of each of these cover routines.

9.4.2. Required Subroutines

The interlace element implementation is currently limited to linear, static, elastic analysis. Therefore, the

currently active cover subroutines are those which supply the functionality which falls withinthese limitations.

Table 9.31 provides a summary of the active subroutines.As new capabilities are added, new cover routines
will be added.

Table 9.31. Summary of ei_cover.ams Subroutines

Subroutine Name Function

EIOD

BOKM

Called duringthe DEFINE ELEMENTS command. This subroutine
most set up the defs and otis arrays and define the element and
processor names.

Called during the FORM STIFFNESS/MATL command. This
subroutine most pass the element stiffness matrix (in the proper
computational frames) for the current interlace element back to the
shell.

9.4.3. An ei.._cover.ams Example

The example given in this section provides cover routines FJODand BOKM for the current version of the
El1 processor. Each subroutine is listed and annotated. A developer of new interface elements need only

copy the el_cover.ams template file (which contains both subroutines) into a file named ei*._cover.ams

(e.g., ei3_cover.ams) and make changes as needed for the specific element implementation.

A Generic Into Element lot COMET-AR 9-25

PRECEDING PAGE BLANK NOT FILMED

9. Devek_e¢ Inmdace June 22, 1994

9.4.3.1 The ElODSubroutine

This subroutine initializes element definition variables (includingthe element and processor names) and

calls the element kernel to DEFINE ELEMENTS. The current version of El1 permits either user or automatic

definition of the number of pseudo-nodes along the interface element. It also requires the definition of alpha-

nodes, which am defined by the element kernel (no user selection of alpha-nodes is permitted). Table 9.32 is

an annotated listing of the EIOD subroutine currently used in the El1 processor. Note that the calling
sequence for subroutine EBD, the argument type declarations, and usuallythe include files will be the same

(namely, the one listed in the Table) for every B processor.

Arguments listed hem

are defined as per the

incdude files in previous

sections.

In<dude selected

¢ommon blocks and

parameters

Typethe inputand
outputarguments

Typethe internal
variables

Table 9.32. Listing of the El1 Processor EBD Subroutine for tire El1 Processor

C=DECK EIOD

C=PURPOSE Element Definition Cover Routine for Interface Elements.

C=BLOCK FORTRAN

subroutine EIOD (EltNam, EltPro, EltTyp, EltNum, defs,

1 ssNdofn, ssDofn, nSS, ssnode,

2 ssnn, ssdofs,

3 sstelt, ssnelt, nAlpha, nAlphaT,

4 anodes, ieDofn, ieNdofn, ieNen, nPn,

5 nape, ssfld, status)

C ...

c Include Files

C ...

include 'ei01im.inc'

include 'ei0ptr.inc'

include 'qsymbol.inc'

C ...

C Argument Dec I a r a t ion s

C ...

character t (*)

character" (*)

character e (-)

integer

integer

integer

integer

integer

integer

integer

integer

integer

integer

integer

integer

integer

integer

integer

integer

integer

EltNam ! Element Name

EltTyp ! Element Type

EltPro ! Element Processor

EltNum ! Element Number

defs(*)

nSS ! Number of SS

ssNdofn(MaxSpE) ! Number of dofs/node

ssDofn(maxDoF,MaxSpE) ! Active dofs/SS

ssnode{MaxNpS,MaxSpE) ! Interface nodes

ssnn[MaxSpE) ! Number of i-nodes

ssdofs(MaxDOF,MaxNpS,MaxSpE) Idofs at each i-node

sstelt(MaxTyp,MaxNpS,MaxSpE) ! Element types

ssnelt (MaxNpS, MaxSpE)

nAlpha (MaxSpE)

nAlphaT

anodes (MaxSpE)

nPn

nApE

ssfid

status

! Number of f.e. types

! Number of alpha dofs

! Total number of alphas

! Number of pseudo-nodes

I number of alfas/f.e.

! fine substructure id

! return status

C ...

c Internal De c la r a t i on s

C ...

character,4 CEltNum ! Character element number

integer ieNen ! number of interface element nodes

integer ieNdofn ! number of dofs/node for the i.e.

integer ieDofn(MaxDOF) ! int. eli. active dofs

C ...

c L O G I C

C .. m

9-26 A Gene_ Imm'lace Element for COMET-AR

June 22. 1994 9. Developer Interface

Table 9.32. Listing of the El1 Processor EIOD SubrouUne for the El1 Processor(Continued)

Checkstatus

Definethe element
nameforthis El

processor

Call Developerwritten
kernelroutinewith

necessaryarguments

Set the element

definition parameters

used by this element

if (status .ne. qOK) return

C

c Define the Element Name:

C

call CI2CL (EltNum, CEltNum, 3,1en)

EltPro = 'EII'

EltTyp = 'HYBV'

EltNam = EltPro(l:3)//'_'//EltTyp(l:4)//'_'//CEltNum(l:len)

C _

C Define the number of alpha's and pseudo-nodes:

C ..

call HYBDEF (ssNdofn,ssDofn, nSS, ssnode,

2 ssnn, ssdofs,

3 sstelt, ssnelt, nAlpha, nAlphaT,

4 aNodes, ieNen, ieNdofn, ieDofn, nPn, nApE, ssfid,

5 status)

C ...

c Set element parameters in the DEFS array:

C ...

do 100 i = i, Mdefs

defs(i) = 0

I00 continue

Returntothe shell

C=E2ZD

defs(pdNEN) = ieNen

defs(pdCLAS) = qBeam

defs(pdNIP) = 1

defs(pdNDOF) = ieNdofn

defs(pdP) = 1

defs(pclDIM) = 1

defs(pdNEE) = ieNen*ieNdofn

defs(pdSHAP) = qLine

defs(pdNORO) = qTrue

defs(pdNLE) = 1

defs(pclNSE) = 1

defs(pdNNLT) = ieNen

defs(pdNNST) = 0

defs(pdCLASS)= qBeam

defs(pdSHAPE)= qLine

return

end

FORTRAN

9.4.3.2 The ElOKMSubrouUne

This subroutine drives the formation of the element material stiffness matrix for each interface element. It

is invoked by the FORM STIFFNESS/MATL command. Unlike EIOD which both calls the kernel routine for
element definition and sets array values, EIOKM acts solely as a translator between the data passed in by the

shell and the data required by the kemel routine.A new element developer therefore must only replace the
call to the kernel routine HYBFRMwith a call to the appropriate new kernel routine; all else about EIOKMwill

remain the same for all interface element types. Table 9.33 is an annotated listing of the EIOKM subroutine

currently used in the El1 processor.Note that the calling sequence for subroutine E/0KM, the argument type
declarations, and usually the include files will be the same (namely, the one listed in the Table) for every El

processor.

A Goc_iclnJ_fimoeElomontlorCOMET-AR 9-27

9. DevtkXDerInmrface June22. 1994

Arguments listed here
defined previously.

Include common blocks

and parameters

Type the input and
output arguments

Type the internal
variables

Check status

Call Developer written
kemel routine with

nece_4zry arguments

Return to the shell

Tabb 9.33. Listing of the El1 Processor EIOKM Subroutine

C=DECK EIOKM

C=PURPOSE Generic Material Stiffness Routine for Interface Elements

C=BLOCK FORTRAN

subroutine EIOKM (defs, ieDofN, nSS, ieEtyp, pathss,

1 pathei, dSpllne, nAlpha, nAlphaT, anodes,

2 nPn, Matrix, scale, nApE, ssnn,

3 ssTdg, ssTgc, eiTdg, eiTgs, status)

C ...

c I n c l'u d e F i i e s

C ...

include 'ei01im.inc'

include 'ei0ptr.lnc'

include 'qsymbol.inc'

C ...

c Argument Decla ra t ions

C _ .. _

integer defs($)

integer ieDofn(MaxDOF)

integer nSS ! Number of substructures

integer ieEtyp(MaxTYp,MaxNEN)

integer nAlpha(nss) ! Number of alpha dofs

integer nAlphaT ! Total number of alphas

integer aNodes(MaxSpE)

integer nPn ! Total number of pseudo-nodes

integer nApE(MaxSpE)

integer ssnn(MaxSpE)

integer status ! return status <I/O>

C=BLOCK DOUBLE

double precision

C=ELSE

real

C=END DOUBLE

2 scale, I element scale factor

3 pathss(MaxNps,MaxSl)E),

4 pathei(MaxPpE),

5 ssTdg(3,3,MaxNpS,MaxSpE),

6 ssTgc(3,3,MaxNpS,MaxSpE),

7 eiTdg(3,3,MaxPpE,MaxSpE),

8 eiTgs(3,3,MaxPIDE),

9 Matrix(MaxI_EE,MaXNEE)] Element matrix

C ...

c Internal Dec I a r a t i ons

C ...

character_4 CEltNum ! Character element number

integer ieNen ! number of i.e. nodes (total)

integer ieNdofn ! number of dofs per node for the i.e.

C ...

c LOGIC

C ...

if (status .ne. qOK) return

ieNdofn = defs(pdNDOF)

ieNEN = defs(pdNEN)

call HYBFRM (nSS, ieEtyp, nAlpha, nAlphaT,aNodes,
2 pathss, pathei, ieDofn, ssnn, ieNen, ieNdofn,

3 nPn, dSpline,Matrix, scale, nApE,

4 ssTdg, ssTgc, eiTdg, eiTgs, status)

return

end

C=ENDFORTRAN

9.4.4. References

None.

9-28 A Gene_ I_ ElementforCOMET-AR

June 22. 1994 9. De_r Imorfaoo

9.5. makefile Example
The creation of an executable interface element processor is a two step process. The first step must be

taken by COMET-AR maintenance personnel and is the creation of object files of the shell subroutines.

Should problems arise when linkingwith the shell subroutines or when Using shell parameters, the interface

element developer should seek assistancefrom COMET-AR maintenance personnel. The second step in the

creation of an executable interface element processor is the creation of the actual El processor executable.
Table 9.34 contains a listingof the makefile used to create the El1 processor exectuable (which can be found
in SAR EIPRC/makeflle.elp).

Processor Name

Set Fortran Flags
and Max keys

Compilation rules

DefineLibrary
Objectsto be

usedinthe Link

EIOINC =

CSM =

AR =

ARLIB =

AR_INC =

UTL =

PRO LI B =

HDB_LIB =

DB_LIB =

UTLSLIB =

ARUTL__LI B =

GEN_LIB =

L I BOBJS =

NICELIBS =

Table 9.34. El1 Processor makef//e Example

•IGNORE :

•SUFFIXES :

•SUFFIXES: .o .ams

Set default name for processor here

ei=eil

FC = fc

FFLAGS = -c -02 -72 -p8

MAXKEYS = NICE SINGLE CONVEX MALLOC EXTP

.ares.o:

rm -f $*.tmp

rm -f $*.f

include -i $*.ams -o $*.tmp -d $(EIOINC)

max /wc/for/sic/ti/mach=unix -i S*.tmp -o $*.f $(MAXKEYS) ${EIOKEY)

- rm $*.tmp

$(FC) -c $(FFLAGS) $*.f >$*.lis 2>&l

EI0 = /usr/u5/gimp/ar/mods/ei

/usr/u5/gi_mnp/ar/mods/inc

/csm

/usr/u2/newlock/ar

$ (AR)/lib

$(EI0)

$ (CSM)/sam/ut 1

$ (AR_LIB)/prolib .a

$ (AR_LIB)/hdblib .a

Create an

executable file

Dependencies

$(AR_LIB)/dblib.a

$(AR_LIB)/sutl.a

$(AR_LIB)/arutl.a

$(AR_LIB)/genlib.a

$(AR_LIB)/gsutil.a $(AR_LIB)/crutil.a

$(AR_LIB)/clp861b.a \

$(AR_LIB)/ga1861b.a \

$(AR_LIB)/dmg861b.a \

$(AR_LIB)/ut1861b.a \

S(AR_LIB)/bio861b.a

LIBS = $(PRO_LIB) $(UTLS_LIB) $(ARUTL_LIB) \

$(HDB_LIB) $(DB_LIB) $(GEN_LIB) $(LIBOBJS) $(NICELIBS)

EI_OBJS = $(EI0)/ei_shell.a $(ei)_cover.o $(ei)_kernel.o

#

$(ei): $(EI_OBJS) $(LIBS)

$(FC) $(LFLAGS) -o $(ei) $(EI0)/main.o $(EI_OBJS) $(LIBS)

cp *.f ..

$(ei)_cover.o : $(ei)_cover.ams hyblim, inc

$(ei)_kernel.o : $(ei)_kernel.ams hyblim.inc

A Genehc Into Element lot COMET-AR 9-29

9. Diwiloflr Initlice ,,lune22, 1994

THIS PAGE INTENTIONALLY BLANK

A _ Inleltiai::e Element for COMET-AR

June 22, 19_4 9. Developer Interlace

A Genehc Inledace Element lot COMET-AR 9-31

June 22. 1904 g. Developer Inmrlace

A Generic Into Element lot COMET-AR 9-32

June 22. lSe4 VL DataOeie_

Part Vl.

DATA OBJECTS

A _ InterlaceElementlot GOMET-AR

O/_ l, 5 9 PRECEDING PAGE BLANK NOr FILI'_

I#1-1

_. Daml Obj4mots Juno _?,, 1994

THIS PAGE INTENTIONALLY BLANK

VI-2 A Generic InDrface Element #or COMET-AR

June22, 1904 10. New Data _

10. New Data Objects

10.1. Overview

The implementation of the interface element required the creation of several new nodal and element

attnl_e tables. This Chapter describes these new objects and is outlined as follows:

Table 10.1. Outline of Chapter 10: New Data Objects

Section

2

3

Subject

New Nodal Objects

New Elemem Objects

Fun_ion

Provide details on the new nodal data objects
(NATs)

Provide details on the new element data
objects (EATs)

A _ _ Elementlot COMET-AR lO-1

PRECEDING PAGE BLANK NOT FILMF_J

10. New Dam Ot_xs June 22, 1994

THIS PAGE INTENTIONALLY BLANK

10-2 A Ge_lm,ic II1mrlmm Eklmm_ k_r COMET-AR

,,Jurm_'_, 1994, 10. New l:)am _

10.2. New Nodal Data Objects

10.2.1. General Description

The interface element implementation required several new nodal attribute tables. These new nodal data
objects are summarized in Table 10.2 and described in subsequent sections.

Table 10.2. Summary of New Nodal Attribute Tables (NATs)

Object Name

NODAL.IEID...mesh

Purpose
I

Identifiesthe interface elements to which the
pseudo-nodes and alpha-nodes are attached.

Creator

El

NODAL.NIDS...mesh Identifies-the original _ number of the master MSTR
model nodes.

NODAL.TANGENTS...mesh Stores path tangents for the pseudo-nodes. El

El (MSTR modifies)Identifies the node type (pseudo-nude, alpha-
node, orfinite element node).

NODAL.TYPE...mesh

In the following discussion,the term "I-node"denotes, collectively,the pseudo-nodes and alpha-nodes.

10.2.2. Nodal Attribute Table (NAT): NODAL.IEID...mesh.

The NODAL.IEID...mesh table contains a single integer for each of the I-nodes. The object is created in
the El processor and is composed of the element identification number of the interface element to which

each I-node is attached. The object format is-

Att_te I-node 1 ... I-node n

NodAtt latlgit1 ... lat]glt n

where In_ is the element identifierof the interface element to which I-node i is attached. Note that each I-

node is, upon creation, attached to only one interface element; this interface element number is listed as

IntEIt. This data object exists solely inthe library containing all and only interface elements.

10.2.3. Nodal Attribute Table (NAT): NODAL.NIDS...mestl.

The NODAL.NIDS...mesh table contains a single number for each of the finite element nodes and I-

nodes. This object is created by the MSTR processor during the node renumbering process and contains the
original node number of each node in the master model. The object format is:

A Generic _ Element lot COMET-AR I0-3

PRECEDING PAGE BLANK NOT FILMED

I0. NewDam_ June22, 1994

! NAT: ::::!NODAL;NIOS,.anelIh

Attribute fe_Node 1...nfe p_Node 1...npn a_Node 1...nan

NodAtt Nid 1_ Nidn_ Nidl -- Nidnpn Nidt - Nidn_

where Nid is the original node number, nfe is the number of finite element nodes, npn is the number of

pseudo-nodes,and nan is the number alpha-nodes.

10.2.4. Nodal Attribute Table (NAT): NODAL.TANGENTS...m_/t.

The NODAL.TANGENTS...me_ table contains a vector for each of the I-nodes. This object is created

by the [] processor during the element definition and contains the path tangent for each pseudo-node and

zeroes for each alpha-node. The object format is:

: : NAT: NODAL.TANGENTS..Jmesh ::

Attribute I-node I ... I-node n

Nodk.tt(3) Ilal_elzt1 . .. lalBgeatn

where taqmt is the tangent vector along the interface element path for the pseudo-nodes and zeroes for the

alpha-nodes. This data object exists solely inthe library containing all and only interface elements.

10.2.5. Nodal Attribute Table (NAT):NODAL.TYPE_mesh

The NODAL.TYPE...mesh table is created in the El processor and recreated by the MSTR processor.

The version of the object used by the El processor contains flags for each of the I-nodes. NI of the interface
elements are stored in a single library, so there will be one NODALTYPF-..tmmh object containing all of
these new I-nodes. Pseudo-nodes are listed first for each element, alpha-nodes are listed second for each

element. The object format is:

Attrbute

NodAU

:NAT: :NODAL.TYPE.,,mesh : _i

I-node 1 ... I-node n

T_pel ... Type/,

where Type will be set to a value of qD or qAipha corresponding to displacement and traction type nodes

(pseudo- and alpha-nodes) respectively. The user may define the number of displacement type nodes

although it is recommended that automatic definition be incorporated by the developer whenever possible.

The modified object created by the MSTIR processor, containsthese flags for all of the nodes in the mas-
ter model (i.e., for the finite element nodes, the pseudo-nodes, and the alpha-nodes). The form of the object

is the same as the original form except that the finite element nodes are all listedfirst, all of the pseudo-nodes

follow, and all of the alpha-nodes are listed at the end of the table.

I0-4 AGenericInlm'kl_ElementlotCOMET-AR

June 22, 1994 10. New DamObje¢_

10.3. Element Data Objects

10.3.1. General Description

For finite elements, each element attribute table contains potentially one record per finite element.

Because of the variable nature of the interface element (that is, each interface element may have a different

number of nodes, pseudo-nodes, and alpha-nodes), each interface element is treated as a different element

type. Therefore, each element table contains data for only one interface element. Several new element
attrbute tables have been created. These new objects (all created by the El processor) are summarized in

Table 10.2 and discussed in detail insubsequent sections.

Table 10.3. Summary of New Element Attribute Tables (EATs)

Object Name

EItName.ELTYPE...mesh

Purpose

Listof finite element types to which each finite element
interface node is attached.

E/Wame.NODSS...mesh Substructureidentifierfor each node of the element.

EItName.NORMALS...mesh Normal vectorsfor finite element nodes and pseudo-nodes.

EItName.PARAMS...mesh Element integer parameters.

EItName.SCALE...mesh Scale Factor.

EItName.SCOORD...mesh Path coordinates for all of the element nodes.

E/Wame.SSID...mesh List of substructures to which the element is attached.

EItNarne.SSLDl...mesh Logical device index (Idi) of each substructure library.

BWame.TANGENT_S...mesh Element path tangent vectors forfinite element nodes and
pseudo-nodos.

EItName.TANGENT T...mesh Element surface tangent (perpendicularto the path
- tangent) for finite element nodes and pseudo-nodes.

E/tName.TGC...mesh Computational to global transformation matrices for the
finite element nodes in each element.

In the following discussion, the phrase "element nodes" denotes all of the finite element nodes, the

pseudo-nodes and the alpha-nodos associated with an element. In all interface element element data objects
(not just those listed in this section), the finite element nodes are listed first,the pseudo-nodes foliow, and the

alpha-nodes are at the end of the list.The total number of element nodes is therefore

ri$
number of evenly-spaced pseudo-noclm +

Nels = '_(numberofnodm;alongintedacelorsubstnJcwmi> 4- number of alpha-nodes

i=1

where ns is the number of substructures attached to the element.

A Generic Into Element Ior COMET-AR 10-5

10. l'kRv DzlzOl)jeclz ,,lune 22, 1994

10.3.2. Element Attribute Table (EAT): EItNarne.ELTYPE..mesh.

The EItName.ELTYPE..mesh table contains a listof the finite element types attached to each node of

the interface element.

Attribute Element 1

vJu_,(.) Err_p_i,j,k)

where IDtTpe('_,k) lists the element types, j. connected to interface node i of substructure k. The finite

element types are described by the numberof nodes along the edge of the finite element. For example, if the
ith node of substructure 1 is connected to a four and a nine node element along the interface the array values

will be _i,1,1),.2, EitTpe(i,Z,]L)-3. The nodes are in substructure order and range over the maximum
number of finite element element types. Zeroes are storedfor the pseudo-nodes and the alpha-nodes.

10.3.3. Element Attribute Table (EAT): EItName.NOOSS...mesh.

The EItName.NODSS..mest_ table contains a list of the substructures attached to each node of the

interface element.

: IEATi i :EIt_NODSS_.W _

Attribute Element 1

EitAU(Nen) NodS$1,NodSS2,---N°dSSNen

where Nm is the total number of nodes (as defined previously)and NodS$i is the substructure to which the ith

node is connected. A value of 0 (zero) indicatesthat the node is a pseudo-node or an alpha-node. This object
provides a cross reference which allows all merge functionsto be performed in the MSTR processor and not

in the El processor.

10.3.4. Element Attribute Table (EAT): EItName.NORMALS..mestl.

The EItName.NORMALS...r"',=_ table contains a normal vector for each pseudo-node (in the interlace

frame) and each finite element node (inthe edge frame) of the interface element. A zero vector is saved for

the alpha-nodes as they have no physical location.

: IEAT: EItNam.NORMALS..,mesh

Attribute Element 1

FJtAtt(3,Nea) Vector 1,Vector2,...VectorNen

where Nea is the total number of nodes (as defined previously) and Vectori is the unit normalvector for the ith
element node.

10-6 A Generic Intedace Ekmtent kx COMET-AR

June 22. 1994 10. New Dala _

10.3.5. Element Attribute Table (FAT): EltName.PARAMS...mesh.

The EItName.PARAMS...mesh table contains a listof the interface element integer parameters.

EAT: EItNme.PARAMS...m¢_ ii

Attribute Element 1

EItA.tt(*) Params(l),Params(2)_

Currently, this object is used to storethe following integerdata:

Attribute Mmmiug

Proms(l) Number of substructuresconnected through this element.

Params(2) Order of interpolation used for the deformation along this interface
element (1,2,3 corresponds to a plecewise linear, quadratic spline, and
cubic splinefunctionsrespectively).

Params(3) Order of interpolation used for the geometry along this interface
element (1,2,3 corresponds to a plecewise linear, quadratic spline, and
cubic splinetunotionsrespectively).

Params(4) Number of pseudo-nodes along this interface element.

ParamKS) Number of alpha-nodes alongthis interface element.

Params(6:n6) Number of alpha-nodes along each substructure.
= S+(number of substructuresattached to this element).

Params(n6+l:n7) Number of alphe-nodes per element for each substructure
n7 =a(H.(number of substructuresattached to this element).

Params(n7+l:aS) Number of f.e. nodes per substructure along this interface element.
aS =nT+(number of substructuresattached to this element).

Params(as+l) Drillingfreedom for this interface element.

Params(as+2) Ddllingfreedom suppressionflag for this interface element.

10.3.6. Element Attribute Table (FAT): EItName.SCALE...mestJ.

The EItName.SCALE...mesh table containsa scale factor for the interface element.

FAT: EItName;SCALE..,mesh

Attribute Element 1

EitAtt Scale

where Scale is an optional real scale factor used to ensure that the stiffness matrix does not become ill-
conditioned.

A Generic Imedace Element lot _-AR 10-7

lO. NewDmaOt_xs _ne 22, 1994

where k is the interface path coordinate

implementation will only accommodate a
accommodate a two dimensional interface.

10.3.7. Element Attribute Table (EAT): EItName.SCOORD...mesh.

The EItName.SCOORD..mesh table contains a list of the path coordinates for all interface element
nodes.

Attribute Element 1

E]ltAtt(Nen) S lrl2_3. ... liNe n

for ith element node. While the current interface element

one-dimensional interface, this object may, in general,

10.3.8. Element Attribute Table (EAT): EItName.SSlD..mesh.

The EItName.SSID..mesh table contains a listof the substructuresattached to the element.

Attribute Element 1

F_,Z_tKMazSpE) SS]D)I,SSll)2, - SSIDM_pE

where MaxSpE is a parameter which defines the maximum number of substructures per interface element
and SS][]D i IS the substructure to which this element is connected.

10.3.9. Element Attribute Table (EAT):EItName.SSLDl..mesh.

The EItName.SSLDi._mes/l table contains a listof the substructuresattached to the element.

Attribute Element 1

EitAU(MaxSpE) SSLDI1,SSLDI2, _ SSLDIMaxSpE

where Mz_pE is a parameter which defines the maximum number of substructures per interface element;
SSLDI i is the logical device index of the ith substructure.

10-8 A Genedc Inledaoo Element lot COMET-AR

June 22. 1094 10. New [h_a Objects

10.3.10. Element Attribute Table (EAT): EitNarne.SSTGC...mesh.

The EItName.SSTGC...mesh table contains the computational-to-global transformation vector for each

finite element node of the interface element. A zero vector is saved for the I-nodes.

EAT: EItName.SSTGC I
I

Attdbute Element 1 I
i

F, itAtt(3,Nea) Vect°rl'Vect°r2'"'Vect°rNen I

where Nea is the total number of nodes (as defined previously) and Vector i is the finite element nodal

comgxdational-to-giobal vector for the ith element node.

10.3.11. Element Attribute Table (EAT): EItName.TANGENT_S..mesh.

The EItName.TANGENT_S...mesh table contains a tangent vector along the interface for each pseudo-
node and each finite element node of the interface element. A zero vector is saved for the alpha-nodes as

they have no physical location.

i EAT: EItName.TANGENT_S--mes/I

Attribute Element 1

F_JL_tt(3,Nee) Vectorl,Vecter2,...VectorNen

where Nee is the total number of nodes (as defined previously)and Vector i is the unittangent vector along the
interface for the ith element node.

10.3.12. Element Attribute Table (FAT): EItName.TANGENT_T_.mesh.

The EItName.TANGENT T...mesh table contains a transverse surface tangent vector for each pseudo-
node and each finite element node of the interface element. A zero vector is saved for the alpha-nodes as

they have no physical location.

:!EAT: EItName.TANGENT.T...mesh :

Attribute Element 1

EitAtt(3,Nee) Vector 1 ,Vector2,...VectorNe n

where Nee is the total number of nodes (as defined previously) and Vectori is the unit surface tangent vector

for the ith element node

10.3.13. References

10.3-1 Stanley, G. M. and Swenson, L., HDB Object-Oriented Database Utilitiesfor COMET-AR, NASA CSM
Contract Report, August, 1992.

A Gene_kltmtaooEkmlentlmODM_-AR 10-9

10. New [:)am Obje_ June 22, 1994

THIS PAGE INTENTIONALLY BLANK

10-10 A Genedo Irmrlace Element lot COMET-AR

June 22, 1904 Appendix A. Glossary'

Appendix A.
GLOSSARY

A Generic Into Bmmem br _E'F-AR A-I

PRECEDING PAGE BLANK NOT FILMED

Appendix A. GIoIMmry June 22. 1994

THIS PAGE INTENTIONALLY BLANK

A-2 A C_nadc Inlm'lace _ lot COMET-AR

June22, 1904 AppendxA.Glossary

Appendix A: Glossary

alpha-nodes

analysis procedure

analysis processor

application procedure

appllcagon

AR (Adaptive Refinement)

COMET.All

command language

computational database

compulational frame

cover procedure

database

data library

data object

data set

Nodes generated by the interlace element processor which are
assigned the tractiondegrees of freedom (if any exist) along the
interface. Alpha-nodes have no meaningful physical location at this
time.

A sequence of commends, written in the COMET-AR command
language CLAMP. An analysis procedure may call upon other
procedures or processors.

A software processor which performs one or more specific analysis
tasks.

An analysis procedure used to solve a specific applicationproblem.
Will typicallycall analysis procedures and execute analysis
processors.

The structural analysis problem to be solved.

A type of analysis which involvesthe automatic adaptation of the
finite element model to ensure a user-specified accuracy in the
solution.

Acronymfor the COmputational MEchanics Testbed -with Adaptive
Refinement. A general-purpose, modular, structural analysis
software system.

An interpretable language consisting of a stream of commands that
controls the execution of a software system.

The database used to store the data associated with the finite
element model, the solution, and, possibly, post-processed data.

Retemnoe frame in which the solution is obtained at each node.

A command language procedure used to mask the executionof one
or more processors.

A collection of stored data.

A term used to refer to a named file within a COMET-AR database.

A tabular data structure that contains both data attributes and
utilitiesthat perform operations on the data.

The data attributespart of a data object.

A Gonm'¢MlorliKmElementlotCOMET-AR

PRECEDING PAGE BLANK NOT FILMED

A-3

Apixmdix A. GJoua_ June 22, 1994

developer

directive

edge frame

element frame

GEP (Generic Element Processor)

global frame

Interface element

Interlace frame

library file

macrosymbol

master model

nodal compatn)imy

procedure

proceduma_umem

processor

A person that develops new processors and/or procedures which
implement new methods (e.g., a new type of finite element, a new
type of solution strategy, a new interface element). Those who use
the COMET-AR system are typicallydivided into two groups: users
and developers.

A special command recordthat is processed directly by CLIP and
not transmitted to the running processor.

Reference frame attached to the finite element edges along a
substructureedge. Defines the computational frame for the
alpha-nodes.

Roference frame attached to each finite element.

A software template for all COMET-AR structural element
processors; provides a common generic user and developer
interlace to such processors.Also referred to as ES. Individual
processor names begin with ES (e.g., ES1, ES10).

Fixed reference frame in which nodal coordinates are defined.

A special type of finite element which connects independently
created finite element models.

Reference frame attached to each interface element. Defines the
computational frame for the pseudo-nodes.

A term used to refer to a named file within a COMET-AR database.

A character string that character string that represents another
character stringor a number. Like a variable name in FORTRAN.

A single model created by combining two or morn finite element
models.

A one-to-one nodal correspondence across substructure
boundaries.

A command language program written in CLAMP and delimited by a
procedure header ($pz-ocedure) and terminator ('end) whiCh may
be parameterized by arguments specified in a calling sequence.

A parameter specified inthe header of a command procedure that
may be used to replace text withinthe procedure.

A semi-independent software program which exchanges information
with the database. Processorstypically read data from and write
new data to the database.

A-4 A Gmm_ric I_ Element for ¢OMET-AR

June22, 1994 ApC_clx/_ Glou_

pseudo-nodes

qSymbol

substructure

template file

user

Nodes generated by the interface element processor which are
assigned the displacement degrees of freedom along the interface.
Pseudo-nodes are evenly spaced along the interface and are
assigned coordinates accordingly.

A FORTRAN integerparameter used in place of an explicitcharacter
string. Several hundred we-defined qSymbols are used in the
COMET-AR system.

A set of UNIX commands that perform a specific function (e.g., run a
particularanalysis) and are placed within an executable rde.

A semi-independent part of a global finite element model.
Substructuresare typicallyused to extract local models from global
models and to model differentcomponents which are part of a larger
structure.

A filewhich providesthe user with an example of the required input
for a given procedure or processor.Template files have been
provided for the interface element processors and control procedure.

Any individual that uses the COMET-AR system for performing an
analysis.Those who use the COMET-AR system are typically
divided intotwo groups: users and developers.

AGenef_Into ElementlotCOMET-AR A-5

AI_ A. Gk)uar,/ June 22, 1994

THIS PAGE INTENTIONALLY BLANK

A-6 A Genedc Irmdace Element for _-AR

FormApproved
REPORT DOCUMENTATION PAGE OMBNo. 070_01_

Pvb_rc.m==_l .tx._h,_.._thi= ookK=io,__ _o,_=tion _ _to =_rf_= 1 hour_ _._oo_Q, _du_ _Urm k= _p'_ !Wn_tio_, p,_=J_ ==mi_ d=a=our.o_..,
ga_mng_ancl._ the _ mindS, and ccm_. r,g _ rewewv_g!he .c_lectlono_irdorn_lcn. ,sendcoj_mnts regarding|hmburde_ee_rrmDOrany olher_ _ th,,,

l-_hwsy, s_ 1204./_=n. vA _0z-43o_ =_ to the Oe,m o_Uana(Wm_ and 8_. Pa¢,emo_ Reduct,_ P_ (07O4-O1883.Ww_ngton. DC 2O5O3.

I. AGENCY USE ONLY (Leave bMnk) 2. REPORT DATE

March 1995
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

A Generic Interface Element for COMET-AR

6. AUTHOR(S)

Susan L. McCleary and Mohammad A. Aminpour

7_' PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Lockheed Engineering and Sciences Company
Hampton, Virginia 23681-0001 and
Analytical Services and Materials, Inc.
Hampton, VA 23681-0001

9. SPONSORINGI MONITORINGAGENCYNAME(S)ANDADDRESS(ES)

National Aeronautics and Space Administration
Langley Research Center
Hampton, Virginia 23681-0001

3. REPORTTYPEANDDATESCOVERED

Contractor Report

C NAS1-19000
C NAS1-19700

WU 505-63-53-01

, B. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

NASA CR-195075

11. SUPPLEMENTARYNOTES

Langley Technical Monitor: Jerrold M. Housner

12¢ DISTRIBUTION/ AVAILABILITYSTATEMENT

Unclassified- Unlimited

Subject Category 39

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This report documents the implementation of an interlace element capability within the COMET-AR software
system. The report is intended for use by both users of currently implemented interface elements and
developers of new interface element forumlations. For guidance on the use of COMET-AR the reader should
refer to Ref. 1-1. A glossary is provided as an Appendix to this reportfor readers unfamiliar with the jargon of
COMET-AR. A summary of the currently implemented interface element formulation is presented in Section 7.3
of this report. For detailed information on the formulation of this interface element, the reader is referred to Refs.
1-8 through 1-10.

14. SUBJECT TERMS

Finite Element, Interface Element, COMET-AR, Shells,
Substructures, Global/Local

17. SECURITY CLASSIFICATION

OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

:19. SECURITY CLASSIFICATION
OF ABSTRACT

IIS. NUMBER OFPAGES

196

=16. PRICE CODE

A09

20. UMITATION OF ABSTRACT

NSN 7540-01-280-:5500

pRECEDING PAGE BLANK NOT FILMED

Standard Form 298 (Rev. 2-8g)
Pmsoribedby ANSIS_d. 239-18
298-102

